簡易檢索 / 詳目顯示

研究生: 詹緹汝
Chan, Ti-Ju
論文名稱: 視黃酸抑制星狀膠細胞麩胺酸轉運蛋白-1的基因與膜蛋白表現之研究
Inhibitory role of retinoic acid in the astroglial glutamate transporter-1 gene expression and its cell surface protein levels.
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 星狀膠細胞麩胺酸轉運蛋白-1視黃酸
外文關鍵詞: astrocyte, GLT-1, retinoic acid
相關次數: 點閱:162下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經元細胞接受刺激或受到損傷後會釋放大量的麩胺酸而造成興奮性神經毒性反應。中樞神經系統內含量最多的膠質細胞為星狀膠細胞,可以透過膜上特定表現的麩胺酸轉運蛋白如麩胺酸/天門冬胺酸轉運蛋白(glutamate/
    aspartate transporter, GLAST /EAAT1)與麩胺酸轉運蛋白-1
    (glutamate transporter-1, GLT-1/EAAT2)來回收胞外高濃度麩胺酸,藉此維持突觸間麩胺酸濃度的恆定。其中以GLT-1最為重要,前腦區域約90%胞外麩胺酸都是由此所回收,然而在大腦發育過程中卻不易偵測到GLT-1的表現。視黃酸(retinoic acid,RA)在脊椎動物神經系統發育與維持扮演重要角色。研究指出,視黃酸會調控成體間葉幹細胞(adult mesenchymal stem cells)的GLT-1基因表現。本實驗室先前以軟體(Footer)預測發現,視黃酸受體(RXR)與GLT-1啟動子可能有七個結合位。基於此,本篇的研究目的主要是想要探討,視黃酸是否也參與調控星狀膠細胞的GLT-1表現。結果發現,視黃酸會抑制星狀膠細胞的GLT-1 mRNA與蛋白質表現。EMSA結果指出,視黃酸可能會經由GLT-1啟動子的RARE 6片段調控GLT-1基因表現,猜測視黃酸可能是透過轉錄調控抑制星狀膠細胞的GLT-1表現。文獻指出,雙丁醯環磷腺苷(dbcAMP)會提升GLT-1的表現量並促進其運送至星狀膠細胞膜上,因此接著探討視黃酸對於dbcAMP處理星狀膠細胞的GLT-1表現影響。在F-actin染色實驗觀察到,視黃酸會使dbcAMP處理細胞變得比較扁平。而視黃酸也會抑制dbcAMP處理細胞的GLT-1 mRNA表現並進一步抑制其麩胺酸回收能力。在慢病毒基因傳輸系統發現,視黃酸降低dbcAMP處理星狀膠細胞觸支上的GLT-1表現。另外我們也觀察到視黃酸會提升dbcAMP處理細胞的PKC活性,因此我們使用兩種PKC抑制劑Bis I與rottlerin來確認視黃酸是否會透過PKC的活化來抑制GLT-1表現。結果指出,處理PKC抑制劑後,視黃酸就無法降低dbcAMP處理細胞的GLT-1膜蛋白表現。另外我們也發現視黃酸影響星狀膠細胞的GLT-1膜蛋白分布可能也與dynamin與clathrin的調控有關。綜合以上結果指出,視黃酸可能會透過RXR所誘導的轉錄調控抑制GLT-1表現,或者是藉由PKC的活化造成GLT-1膜蛋白表現下降,而這樣的現象可能與dynamin與clathrin的參與有關。

    In the mammalian central nervous system (CNS), astrocytes are responsible for clearance of excess extracellular glutamate molecules through glutamate transporter-1 (GLT-1)/EAAT-2 and Na+-dependent glutamate/aspartate
    transporter (GLAST). GLT-1 is the most important glutamate transporter subtype sice it is responsible for 90% of forebrain glutamate uptake in adult, wherase GLT-1 expression is undetected in developing brain. Retinoic acid (RA), a potent regulator of differentiation in the nervous system, mediates GLT-1 expression in the adult mesenchymal stem cells. Rat GLT-1 promoter sequence contains several retinoid X receptor (RXR) DNA binding regions. Accordingly, we attempted to examine whether RA signaling is involved in the regulation of GLT-1 expression in primary rat astrocytes. Our results showed that treatment with RA for 24 h significantly reduced GLT-1 mRNA and GLT-1 membrane protein levels in astrocytes. Electrophoresis motility shift assay (EMSA) indicated that the RXR-DNA binding activity was increased in astrocytes after treatment with RA for 1 h, suggesting that the decline of GLT-1 levels in RA-treated astrocytes was mediated at the transcriptional levels. Given that intracellular cAMP is involved in GLT-1 expression and cellular trafficking in astrocytes, the effect of RA on dbcAMP-treated astrocytes was further examined. F-actin staining indicated that RA caused dbcAMP-treated astrocytes to become more flat. Similar to the condition in the absence of dbcAMP, RA significantly inhibited GLT-1 mRNA expression in dbcAMP-treated astrocytes and suppressed their glutamate uptake activity. Through lentiviral gene delivery approach, GLT-1levels in the processes of dbcAMP-treated astrocytes were attenuated by RA. Based on the finding that RA induced protein kinase C (PKC) activation in dbcAMP-treated astrocytes, the two inhibitors of PKC, Bis I and rottlerin, were used to determine the involvement of PKC in RA-induced GLT-1 reduction. Indeed, pretreatment with the PKC inhibitors, RA failed to reduce GLT-1 membrane protein levels in dbcAMP-treated astrocytes. Furthermore, we found that dynamin and clatherin were invovled in RA-induced redistribution of GLT-1 in astrocytic cell surface. In summary, we conclude that RA reduces GLT-1 levels in astrocytes not only through RXR-mediated inhibition at its transcriptional level, but also triggers the activation of PKC to reduce cell surface levels of GLT-1 possibly via dynamin and clathrin-dependent pathways.

    中文摘要.........2 Abstract........4 誌謝.............6 目錄.............8 圖目錄...........10 縮寫表...........11 前言.............12 一、中樞神經系統星狀膠細胞之介紹........12 二、麩胺酸與麩胺酸轉運蛋白.............14 三、GLT-1的功能......................16 四、GLT-1的調控......................18 五、視黃酸的介紹......................20 實驗目的.............................24 材料與方法...........................25 一、 材料........................25 1、 細胞培養材料.................25 2、 化學藥品....................25 3、 寡核甘酸....................26 4、 抗體........................26 5、 試劑組及病毒載體..............27 二、 方法.........................27 (一)、 細胞培養.......................28 (二)、 細胞生存力分析 (cell viability assay)...............29 (三)、 核酸即時定量分析(Quantitative Real-Time Polymerase Chain Reaction, Q-PCR)..................................29 (四)、 西方點墨法 (Western bloting).......................31 (五)、 麩胺酸回收能力分析 (glutamate uptake)...............33 (六)、 細胞核蛋白萃取及電泳遷移率變動分析(electrophoresis mobility shift assay;EMSA).............................33 (七)、 細胞免疫螢光染色法..................................35 (八)、 蛋白質激酶C活性分析 (PKC kinase activity assay).....36 結果.....................................................38 一、 視黃酸不會影響星狀膠細胞骨架結構與存活率..............38 二、 視黃酸抑制星狀膠細胞的GLT-1基因表現與麩胺酸回收.......38 三、 視黃酸活化核蛋白與GLT-1啟動子的鍵結.................40 四、 視黃酸抑制由dbcAMP所提升之星狀膠細胞的GLT-1基因表現與麩胺酸回收能力................................................41 五、 視黃酸透過PKC的活化而降低膜上GLT-1表現..............42 討論.....................................................44  神經發育過程中,視黃酸對於GLT-1表現的影響............44  視黃酸受體可做為抑制子而影響GLT-1基因表現............45  視黃酸參與非基因調控降低膜上GLT-1蛋白表現............46 參考文獻..................................................49 圖一、視黃酸不會影響星狀膠細胞的形態變化......................59 圖二、視黃酸不會影響星狀膠細胞的骨架結構......................60 圖三、視黃酸不會影響星狀膠細胞的存活率........................61 圖四、視黃酸抑制星狀膠細胞的GLT-1 mRNA表現...................62 圖五、視黃酸抑制星狀膠細胞的GLT-1蛋白質表現...................63 圖六、視黃酸抑制星狀膠細胞的麩胺酸回收能力.....................64 圖七、視黃酸不會影響星狀膠細胞GLT-1 mRNA的穩定性..............65 圖八、視黃酸提升核蛋白與RAR/RXR consensus sequence的鍵結.....66 圖九、視黃酸提升核蛋白與RARE 6的鍵結能力......................67 圖十、視黃酸會影響dbcAMP處理星狀膠細胞的骨架結構...............68 圖十一、視黃酸抑制dbcAMP處理星狀膠細胞的GLT-1 mRNA............69 圖十二、視黃酸抑制dbcAMP處理星狀膠細胞的GLT-1 蛋白質表現.......70 圖十三、視黃酸抑制dbcAMP處理星狀膠細胞的麩胺酸回收能力..........71 圖十四、視黃酸會提升dbcAMP處理星狀膠細胞的PKC活性..............72 圖十五、以慢病毒載體系統(lentivirus-delivery system)促進星狀膠細胞的GLT-1表現量(GLT-1+-astrocytes).........................73 圖十六、dbcAMP處理促進GLT-1+-astrocytes的星狀化型態與膜上GLT-1表現........................................................74 圖十七、視黃酸抑制由dbcAMP促進GLT-1+-astrocytes的星狀化與膜上GLT-1表現.................................................75 圖十八、PKC抑制劑可以回復視黃酸所抑制的GLT-1+-astrocytes星狀化與膜上GLT-1表現..............................................76 圖十九、dynamin與clathrin抑制劑可以回復視黃酸所抑制的GLT-1+-astrocytes的膜上GLT-1表現 ..................................77

    Abbott, N. J., L. Ronnback, et al. (2006). "Astrocyte-endothelial interactions at the blood-brain barrier." Nat Rev Neurosci 7(1): 41-53.
    Albrecht, J., W. Hilgier, et al. (2000). "Extracellular Concentrations of Taurine, Glutamate, and Aspartate in the Cerebral Cortex of Rats at the Asymptomatic Stage of Thioacetamide-Induced Hepatic Failure: Modulation by Ketamine Anesthesia." Neurochemical Research 25(11): 1497-1502.
    Allen, N. J. and B. A. Barres (2009). "Neuroscience: Glia [mdash] more than just brain glue." Nature 457(7230): 675-677.
    Allritz, C., S. Bette, et al. (2010). "Comparative structural and functional analysis of the GLT-1/EAAT-2 promoter from man and rat." Journal of Neuroscience Research 88(6): 1234-1241.
    Anderson, C. M. and R. A. Swanson (2000). "Astrocyte glutamate transport: review of properties, regulation, and physiological functions." Glia 32(1): 1-14.
    Baorto, D. M., W. Mellado, et al. (1992). "Astrocyte process growth induction by actin breakdown." The Journal of Cell Biology 117(2): 357-367.
    Bastien, J. and C. Rochette-Egly (2004). "Nuclear retinoid receptors and the transcription of retinoid-target genes." Gene 328: 1-16.
    Bayon, Y., M. A. Ortiz, et al. (2003). "Inhibition of I{kappa}B Kinase by a New Class of Retinoid-Related Anticancer Agents That Induce Apoptosis." Mol. Cell. Biol. 23(3): 1061-1074.
    Beart, P. M. and R. D. O'Shea (2007). "Transporters for L-glutamate: An update on their molecular pharmacology and pathological involvement." British Journal of Pharmacology 150(1): 5-17.
    Benveniste, E. N. (1992). "Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action." Am J Physiol Cell Physiol 263(1): C1-16.
    Bergles, D. E. and C. E. Jahr (1998). "Glial Contribution to Glutamate Uptake at Schaffer Collateral-Commissural Synapses in the Hippocampus." J. Neurosci. 18(19): 7709-7716.
    Bianchi, M. G., R. Gatti, et al. (2010). "The glutamate transporter excitatory amino acid carrier 1 associates with the actin-binding protein [alpha]-adducin." Neuroscience 169(2): 584-595.
    Bianchi, M. G., G. C. Gazzola, et al. (2009). "The ATRA-dependent overexpression of the glutamate transporter EAAC1 requires RARbeta induction." Biochim Biophys Acta 1788(9): 1861-8.
    Bianchi, M. G., G. C. Gazzola, et al. (2008). "C6 glioma cells differentiated by retinoic acid overexpress the glutamate transporter excitatory amino acid carrier 1 (EAAC1)." Neuroscience 151(4): 1042-52.
    Bradford, J., J.-Y. Shin, et al. (2009). "Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms." Proceedings of the National Academy of Sciences 106(52): 22480-22485.
    Bridges, R. J. and C. S. Esslinger (2005). "The excitatory amino acid transporters: Pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes." Pharmacology & Therapeutics 107(3): 271-285.
    Bushong, E. A., M. E. Martone, et al. (2004). "Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development." International Journal of Developmental Neuroscience 22(2): 73-86.
    Carter, C. A., G. P. Parham, et al. (1998). "Cytoskeletal Reorganization Induced by Retinoic Acid Treatment of Human Endometrial Adenocarcinoma (RL95-2) Cells Is Correlated with Alterations in Protein Kinase C-帢." Pathobiology 66(6): 284-292.
    Chao, X.-d., F. Fei, et al. (2010). "The Role of Excitatory Amino Acid Transporters in Cerebral Ischemia." Neurochemical Research 35(8): 1224-1230.
    Chattopadhyay, N. and E. M. Brown (2001). "Retinoic acid receptors are expressed in human primary astrocytes and their agonists inhibit parathyroid hormone-related peptide expression and secretion." Molecular Brain Research 92(1-2): 172-176.
    Chen, N., B. Onisko, et al. (2008). "The Nuclear Transcription Factor RARα Associates with Neuronal RNA Granules and Suppresses Translation." Journal of Biological Chemistry 283(30): 20841-20847.
    Chen, W., S.-Y. Cai, et al. (2007). "Nuclear receptors RXRα:RARα are repressors for human MRP3 expression." American Journal of Physiology - Gastrointestinal and Liver Physiology 292(5): G1221-G1227.
    Chen, Y. and R. A. Swanson (2003). "Astrocytes and Brain Injury." J Cereb Blood Flow Metab 23(2): 137-149.
    Choi, W.-H., K.-A. Ji, et al. (2005). "Anti-inflammatory roles of retinoic acid in rat brain astrocytes: Suppression of interferon-[gamma]-induced JAK/STAT phosphorylation." Biochemical and Biophysical Research Communications 329(1): 125-131.
    Christie, V. B., D. J. Maltman, et al. (2010). "Retinoid supplementation of differentiating human neural progenitors and embryonic stem cells leads to enhanced neurogenesis in vitro." Journal of Neuroscience Methods 193(2): 239-245.
    Cocco, S., G. Diaz, et al. (2002). "Vitamin A deficiency produces spatial learning and memory impairment in rats." Neuroscience 115(2): 475-482.
    Corcoran, J., P. L. So, et al. (2002). "Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients." Journal of Cell Science 115(24): 4735-4741.
    Corcoran, J. P. T., P. L. So, et al. (2004). "Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain." European Journal of Neuroscience 20(4): 896-902.
    Cvekl, A. and W.-L. Wang (2009). "Retinoic acid signaling in mammalian eye development." Experimental Eye Research 89(3): 280-291.
    Danbolt, N. C. (2001). "Glutamate uptake." Prog Neurobiol 65(1): 1-105.
    Day, R. M., Y. H. Lee, et al. (2006). "Retinoic acid inhibits airway smooth muscle cell migration." Am J Respir Cell Mol Biol 34(6): 695-703.
    de Hemptinne, I., C. Vermeiren, et al. (2004). "Induction of glial glutamate transporters in adult mesenchymal stem cells." J Neurochem 91(1): 155-66.
    de Toledo, F. G., K. W. Beers, et al. (1997). "Pleiotropic upregulation of Na(+)-dependent cotransporters by retinoic acid in opossum kidney cells." Am J Physiol 273(3 Pt 2): F438-44.
    Dinsmore, J., J. Ratliff, et al. (1996). "Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation." Cell Transplantation 5(2): 131-143.
    Donato, R. (2001). "S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles." The International Journal of Biochemistry & Cell Biology 33(7): 637-668.
    Dringen, R., R. Gebhardt, et al. (1993). "Glycogen in astrocytes: possible function as lactate supply for neighboring cells." Brain Research 623(2): 208-214.
    Durand, D., C. Caruso, et al. (2010). "Metabotropic glutamate receptor 3 activation prevents nitric oxide-induced death in cultured rat astrocytes." Journal of Neurochemistry 112(2): 420-433.
    Eng, D. L., Y. L. Lee, et al. (1997). "Expression of glutamate uptake transporters after dibutyryl cyclic AMP differentiation and traumatic injury in cultured astrocytes." Brain Research 778(1): 215-221.
    Farrar, N. R., J. M. Dmetrichuk, et al. (2009). "A novel, nongenomic mechanism underlies retinoic acid-induced growth cone turning." J Neurosci 29(45): 14136-42.
    Fellin, T. and G. Carmignoto (2004). "Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit." The Journal of Physiology 559(1): 3-15.
    Figiel, M. and J. Engele (2000). "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a Neuron-Derived Peptide Regulating Glial Glutamate Transport and Metabolism." J. Neurosci. 20(10): 3596-3605.
    Figiel, M., T. Maucher, et al. (2003). "Regulation of glial glutamate transporter expression by growth factors." Experimental Neurology 183(1): 124-135.
    Freeman, M. R. (2010). "Specification and Morphogenesis of Astrocytes." Science 330(6005): 774-778.
    Furuta, A., J. D. Rothstein, et al. (1997). "Glutamate Transporter Protein Subtypes Are Expressed Differentially during Rat CNS Development." J. Neurosci. 17(21): 8363-8375.
    Ganel, R. and C. E. Crosson (1998). "Modulation of Human Glutamate Transporter Activity by Phorbol Ester." Journal of Neurochemistry 70(3): 993-1000.
    Gegelashvili, G., N. C. Danbolt, et al. (1997). "Neuronal Soluble Factors Differentially Regulate the Expression of the GLT1 and GLAST Glutamate Transporters in Cultured Astroglia." Journal of Neurochemistry 69(6): 2612-2615.
    Gegelashvili, G., Y. Dehnes, et al. (2000). "The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms." Neurochemistry International 37(2-3): 163-170.
    Glass, C. K. (1996). "Some new twists in the regulation of gene expression by thyroid hormone and retinoic acid receptors." J Endocrinol 150(3): 349-357.
    Goldman, J. E. and B. Abramson (1990). "Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin." Brain Research 528(2): 189-196.
    González, M. I. and M. B. Robinson (2004). "Protein KINASE C - Dependent Remodeling of Glutamate Transporter Function." Molecular Interventions 4(1): 48-58.
    Guillet, B. A., L. J. Velly, et al. (2005). "Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures." Neurochemistry International 46(4): 337-346.
    Haskell, G. T. and A.-S. LaMantia (2005). "Retinoic Acid Signaling Identifies a Distinct Precursor Population in the Developing and Adult Forebrain." The Journal of Neuroscience 25(33): 7636-7647.
    Hsiao, H. Y., O. T. Mak, et al. (2007). "TNF-alpha/IFN-gamma-induced iNOS expression increased by prostaglandin E2 in rat primary astrocytes via EP2-evoked cAMP/PKA and intracellular calcium signaling." Glia 55(2): 214-23.
    I. González, M., B. T. S. Susarla, et al. (2005). "Evidence that protein kinase Cα interacts with and regulates the glial glutamate transporter GLT-1." Journal of Neurochemistry 94(5): 1180-1188.
    Jang, Y. K., J. J. Park, et al. (2004). "Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells." Journal of Neuroscience Research 75(4): 573-584.
    Jourdain, P., L. H. Bergersen, et al. (2007). "Glutamate exocytosis from astrocytes controls synaptic strength." Nat Neurosci 10(3): 331-339.
    Kalandadze, A., Y. Wu, et al. (2002). "Protein Kinase C Activation Decreases Cell Surface Expression of the GLT-1 Subtype of Glutamate Transporter." Journal of Biological Chemistry 277(48): 45741-45750.
    Kambhampati, S., Y. Li, et al. (2003). "Activation of Protein Kinase Cδ by All-trans-retinoic Acid." Journal of Biological Chemistry 278(35): 32544-32551.
    Kanai, Y. and M. Hediger (2004). "The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects." Pflügers Archiv European Journal of Physiology 447(5): 469-479.
    Kanai, Y. and M. A. Hediger (2003). "The glutamate and neutral amino acid transporter family: physiological and pharmacological implications." European Journal of Pharmacology 479(1-3): 237-247.
    Kastner, P., M. Mark, et al. (1997). "Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development." Development 124(2): 313-326.
    Katagiri, H., K. Tanaka, et al. (2001). "Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction." European Journal of Neuroscience 14(3): 547-553.
    Kirchhoff, F., R. Dringen, et al. (2001). "Pathways of neuron-astrocyte interactions and their possible role in neuroprotection." European Archives of Psychiatry and Clinical Neuroscience 251(4): 159-169.
    Koch, H. P. and H. P. Larsson (2005). "Small-Scale Molecular Motions Accomplish Glutamate Uptake in Human Glutamate Transporters." The Journal of Neuroscience 25(7): 1730-1736.
    Kornyei Z., Gocza E., et al. (2007). "Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis." The FASEB Journal 21(10): 2496-2509.
    Lau, A. and M. Tymianski (2010). "Glutamate receptors, neurotoxicity and neurodegeneration." Pflügers Archiv European Journal of Physiology 460(2): 525-542.
    Lee, H.-C., M. B. Headley, et al. (2008). "Cutting Edge: Inhibition of NF-κB-Mediated TSLP Expression by Retinoid X Receptor." The Journal of Immunology 181(8): 5189-5193.
    Lee, Y. M., J. O. Lee, et al. (2008). "Retinoic Acid Leads to Cytoskeletal Rearrangement through AMPK-Rac1 and Stimulates Glucose Uptake through AMPK-p38 MAPK in Skeletal Muscle Cells." J. Biol. Chem. 283(49): 33969-33974.
    Levy, L. M., O. Warr, et al. (1998). "Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake." J Neurosci 18(23): 9620-8.
    Li, L. B., S. V. Toan, et al. (2006). "Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype." Journal of Neurochemistry 97(3): 759-771.
    Liang, J., H. Takeuchi, et al. (2008). "Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity." Brain Research 1210: 11-19.
    Liao, Y.-P., S.-Y. Ho, et al. (2004). "Non-genomic regulation of transmitter release by retinoic acid at developing motoneurons in Xenopus cell culture." Journal of Cell Science 117(14): 2917-2924.
    Lin, C.-l. G., I. Orlov, et al. (2001). "Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18." Nature 410(6824): 84-88.
    Liu, Y.-P., C.-S. Yang, et al. (2008). "Ca2+-dependent reduction of glutamate aspartate transporter GLAST expression in astrocytes by P2X7 receptor-mediated phosphoinositide 3-kinase signaling." Journal of Neurochemistry 113(1): 213-227.
    Müller, H. W., U. Junghans, et al. (1995). "Astroglial neurotrophic and neurite-promoting factors." Pharmacology & Therapeutics 65(1): 1-18.
    Maden, M. (2002). "Retinoid signalling in the development of the central nervous system." Nat Rev Neurosci 3(11): 843-53.
    Maden, M. (2007). "Retinoic acid in the development, regeneration and maintenance of the nervous system." Nat Rev Neurosci 8(10): 755-65.
    Mangelsdorf, D. J., C. Thummel, et al. (1995). "The nuclear receptor superfamily: the second decade." Cell 83(6): 835-9.
    Markiewicz, I. and B. Lukomska (2006). "The role of astrocytes in the physiology and pathology of the central nervous system." Acta Neurobiol Exp (Wars) 66(4): 343-58.
    Matsugami, T. R., K. Tanemura, et al. (2006). "From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development." Proc Natl Acad Sci U S A 103(32): 12161-6.
    Misner, D. L., S. Jacobs, et al. (2001). "Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity." Proceedings of the National Academy of Sciences of the United States of America 98(20): 11714-11719.
    Na, S.-Y., B. Y. Kang, et al. (1999). "Retinoids Inhibit Interleukin-12 Production in Macrophages through Physical Associations of Retinoid X Receptor and NF庥B." Journal of Biological Chemistry 274(12): 7674-7680.
    Nakagawa, T., Y. Otsubo, et al. (2008). "Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial–neuronal cultures." European Journal of Neuroscience 28(9): 1719-1730.
    Newman, E. A. (2003). "New roles for astrocytes: Regulation of synaptic transmission." Trends in Neurosciences 26(10): 536-542.
    Nidai Ozes, O., L. D. Mayo, et al. (1999). "NF-[kappa]B activation by tumour necrosis factor requires the Akt serine-threonine kinase." Nature 401(6748): 82-85.
    Nitti, M., A. L. Furfaro, et al. (2010). "PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation." Cellular Signalling 22(5): 828-835.
    Obermair, F.-J., A. Schröter, et al. (2008). "Endogenous Neural Progenitor Cells as Therapeutic Target After Spinal Cord Injury." Physiology 23(5): 296-304.
    Paixao, S. and R. Klein (2010). "Neuron-astrocyte communication and synaptic plasticity." Current Opinion in Neurobiology 20(4): 466-473.
    Pindon, A., B. W. Festoff, et al. (1998). "Thrombin-induced reversal of astrocyte stellation is mediated by activation of protein kinase C β-1." European Journal of Biochemistry 255(3): 766-774.
    Privat, A. (2003). "Astrocytes as support for axonal regeneration in the central nervous system of mammals." Glia 43(1): 91-93.
    Raff, M. C., E. R. Abney, et al. (1983). "Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics." J. Neurosci. 3(6): 1289-1300.
    Raunser, S., W. Haase, et al. (2005). "High-yield Expression, Reconstitution and Structure of the Recombinant, Fully Functional Glutamate Transporter GLT-1 from Rattus norvegicus." Journal of Molecular Biology 351(3): 598-613.
    Re, D. B., I. Nafia, et al. (2006). "Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport." Glia 54(1): 47-57.
    Rincon, S. V. d., Q. Guo, et al. (2004). "Retinoic acid mediates degradation of IRS-1 by the ubiquitin-proteasome pathway, via a PKC-dependant mechanism." Oncogene 23(57): 9269-9279.
    Robinson, M. B. (1998). "Review Article The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype." Neurochemistry International 33(6): 479-491.
    Rossi, D. J., T. Oshima, et al. (2000). "Glutamate release in severe brain ischaemia is mainly by reversed uptake." Nature 403(6767): 316-321.
    Rothstein, J. D., M. Dykes-Hoberg, et al. (1996). "Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate." Neuron 16(3): 675-86.
    Rotmann, A., D. Strand, et al. (2004). "Protein kinase C activation promotes the internalization of the human cationic amino acid transporter hCAT-1?a new regulatory mechanism for hCAT-1 activity." Journal of Biological Chemistry.
    Sakai, T., T. Yoshitoshi, et al. (2006). "Increased glutamate uptake and GLAST expression by cyclic AMP in retinal glial cells." Graefe's Archive for Clinical and Experimental Ophthalmology 244(3): 359-363.
    Schlag, B. D., J. R. Vondrasek, et al. (1998). "Regulation of the Glial Na+-Dependent Glutamate Transporters by Cyclic AMP Analogs and Neurons." Molecular Pharmacology 53(3): 355-369.
    Schrage, K., G. Koopmans, et al. (2006). "Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injury." European Journal of Neuroscience 23(2): 285-295.
    Schwartz, I. F., M. Ingbir, et al. (2007). "Arginine uptake is attenuated, through post-translational regulation of cationic amino acid transporter-1, in hyperlipidemic rats." Atherosclerosis 194(2): 357-363.
    Schwartz, M., I. Shaked, et al. (2003). "Protective autoimmunity against the enemy within: fighting glutamate toxicity." Trends in Neurosciences 26(6): 297-302.
    Sheldon, A. L., M. I. González, et al. (2008). "Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1." Neurochemistry International 53(6-8): 296-308.
    Sheldon, A. L. and M. B. Robinson (2007). "The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention." Neurochem Int 51(6-7): 333-55.
    Shigeri, Y., R. P. Seal, et al. (2004). "Molecular pharmacology of glutamate transporters, EAATs and VGLUTs." Brain Research Reviews 45(3): 250-265.
    Sitcheran, R., P. Gupta, et al. (2005). "Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression." Embo J 24(3): 510-20.
    Stanimirovic, D. B., R. Ball, et al. (1999). "Developmental regulation of glutamate transporters and glutamine synthetase activity in astrocyte cultures differentiated in vitro." International Journal of Developmental Neuroscience 17(3): 173-184.
    Struzynska, L. (2009). "A glutamatergic component of lead toxicity in adult brain: The role of astrocytic glutamate transporters." Neurochemistry International 55(1-3): 151-156.
    Susarla, B. T. S. and M. B. Robinson (2008). "Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester." Neurochemistry International 52(4-5): 709-722.
    Swanson, R. A., J. Liu, et al. (1997). "Neuronal Regulation of Glutamate Transporter Subtype Expression in Astrocytes." J. Neurosci. 17(3): 932-940.
    Takuma, K., A. Baba, et al. (2004). "Astrocyte apoptosis: implications for neuroprotection." Progress in Neurobiology 72(2): 111-127.
    Tanaka, K., K. Watase, et al. (1997). "Epilepsy and Exacerbation of Brain Injury in Mice Lacking the Glutamate Transporter GLT-1." Science 276(5319): 1699-1702.
    Thorlin, T., R. S. Roginski, et al. (1998). "Regulation of the glial glutamate transporter GLT-1 by glutamate and [delta]-opioid receptor stimulation." FEBS Letters 425(3): 453-459.
    Torrecillas, A., I. Fita, et al. (2003). "Retinoic Acid Binds to the C2-Domain of Protein Kinase C帢??AU - Ochoa, Wendy F." Biochemistry 42(29): 8774-8779.
    van Neerven, S., E. Kampmann, et al. (2008). "RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases." Progress in Neurobiology 85(4): 433-451.
    Wang, C., M. A. Kane, et al. (2010). "Multiple Retinol and Retinal Dehydrogenases Catalyze All-trans-retinoic Acid Biosynthesis in Astrocytes." Journal of Biological Chemistry 286(8): 6542-6553.
    Wang, T.-W., H. Zhang, et al. (2005). "Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway." Development 132(12): 2721-2732.
    Watase, K., K. Hashimoto, et al. (1998). "Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice." European Journal of Neuroscience 10(3): 976-988.
    Yamada, T., K. Kawahara, et al. (2006). "Nitric Oxide Produced During Sublethal Ischemia Is Crucial for the Preconditioning-Induced Down-Regulation of Glutamate Transporter GLT-1 in Neuron/Astrocyte Co-Cultures." Neurochemical Research 31(1): 49-56.
    Yeh, T.-H., H.-M. Hwang, et al. (2005). "Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia." Neurobiology of Disease 18(3): 476-483.
    Yi, J.-H. and A. S. Hazell (2006). "Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury." Neurochemistry International 48(5): 394-403.
    Zelenaia, O., B. D. Schlag, et al. (2000). "Epidermal Growth Factor Receptor Agonists Increase Expression of Glutamate Transporter GLT-1 in Astrocytes through Pathways Dependent on Phosphatidylinositol 3-Kinase and Transcription Factor NF-庥B." Molecular Pharmacology 57(4): 667-678.
    Zhou, J. and M. L. Sutherland (2004). "Glutamate Transporter Cluster Formation in Astrocytic Processes Regulates Glutamate Uptake Activity." J. Neurosci. 24(28): 6301-6306.
    Zhou, J. and M. L. Sutherland (2004). "Glutamate Transporter Cluster Formation in Astrocytic Processes Regulates Glutamate Uptake Activity." The Journal of Neuroscience 24(28): 6301-6306.

    下載圖示 校內:2016-06-29公開
    校外:2016-06-29公開
    QR CODE