簡易檢索 / 詳目顯示

研究生: 籃加純
Lan, Chia-Chun
論文名稱: 表面電漿子強化氮化銦鎵/氮化鎵發光二極體之製作分析
Fabrication and Analysis of Surface Plasmon Enhanced InGaN/GaN Based Light Emitting Diode
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 氮化鎵發光二極體表面電漿子
外文關鍵詞: GaN, Light Emitting Diode, Surface Plasmon
相關次數: 點閱:60下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增益藍光與綠光氮化鎵發光二極體的發光效率,本研究藉由引入一創新的結構來引發表面電漿電磁波效應,以增強發光二極體的發光強度。而此結構主要為,利用電子束微影及感應式耦合電漿蝕刻製程在發光二極體的p型層上製作二維孔洞陣列,並利用電子束蒸鍍與金屬舉離製程於孔洞內填入銀的奈米結構,透過微觀光致螢光光譜探討已導入銀奈米結構的發光二極體之發光強度與波長的變化。實驗結果發現,綠光發光二極體在導入銀奈米結構於p型氮化鎵孔洞陣列後,此金屬結構可有效地引發表面電漿週期效應而使發光增強。在綠光發光二極體最多可達到180 %的增益效果,且發光波長與半高寬會因表面電漿效應,而產生藍位移與變寬的現象。對於藍光發光二極體,若欲藉表面電漿電磁波使發光強度產生有效的增益,銀奈米結構週期須相當小,製程上不易達到。本研究因而改引入銀奈米粒子於p型氮化鎵孔洞陣列,使在藍光發光二極體的發光強度上,最多可得到145 %的增強效果。實驗上發現在藍光發光二極體中,發光強度的增強主要來自銀奈米粒子本身所造成的微小週期與起伏,且隨著銀奈米粒子密度增加,表面電漿子數量越多,增益量也會隨之增大。綜論而言,無論是綠光或藍光發光二極體皆能夠藉由此結構的引入與銀奈米結構的設計,對其正面發光強度達到有效的增
    益。

    In this research, two-dimensional hole array on p-GaN layer of green and blue light emitting diodes was manufactured by e-beam lithography and inductively coupled plasma etching system. Then, e-beam evaporator and lift-off procedure was employed to fill the Ag nanostructures in the holes, and furthermore the variation of μ-PL intensity and wavelength position was explored through micro photoluminescence measurement. The results reveal that the contribution of the hole array and periodic Ag nanostructure to the enhancement of μ-PL intensity would reach 180% after introducing the Ag nanoparticles with sizes as the hole diameter into the periodic hole array on the p-GaN layer of the green light emitting diodes. Moreover, the wavelength position would be blue shifted and the full-width at half-maximum of the μ-PL peak would be broaden due to the effect of surface plasmon. Besides, the theoretical calculation, the contribution of enhancement from Ag nanostructures comes from the periodic effect of surface plasmon. With regard to the blue light emitting diodes, fine Ag nanoparticles (the diameters are much smaller than hole diameter) were introduced into the hole array on p-GaN layer, and the enhancement of luminous intensity would reach 145%. In addition, the part of the enhancement resulted from metal nanostructure comes from the Ag nanoparticles structures themselves; and further, as the density of the Ag nanoparticles increases, the enhancement of μ-PL intensity would be larger.
    To sum up, the effective enhancement of the luminous intensity from the top can be achieved by the introduction of the structure and the design of Ag nanostructurse as the effective excitation of surface Plasmon for both the
    green and blue light emitting diodes.

    總目錄 摘要Ⅰ AbstractⅡ 致謝Ⅳ 總目錄Ⅴ 目錄Ⅴ 表目錄Ⅸ 圖目錄Ⅹ 目錄 第一章 前言1 第二章 理論基礎、文獻回顧與動機2 2-1 氮化鎵材料之結構與特性2 2-2 發光二極體之結構與理論介紹3 2-2-1 發光二極體之基本結構3 2-2-2 發光二極體之發光原理4 2-2-3 發光二極體之發光效率7 2-2-3-1 內部量子效率7 2-2-3-2 外部量子效率8 2-3 表面電漿電磁波之理論與特性10 2-3-1 色散關係的推導10 2-3-2 色散關係曲線圖16 2-3-3 激發表面電漿的方法17 2-4 表面電漿電磁波應用於發光二極體之理論與文獻回顧20 2-4-1表面電漿提升發光效率之理論基礎20 2-4-2表面電漿提升發光效率之文獻回顧22 2-5 實驗動機與目標28 第三章 實驗流程與方法32 3-1 實驗流程圖32 3-2 製程儀器設備簡介33 3-2-1 電子束微影製程33 3-2-2 感應式耦合電漿蝕刻系統34 3-2-3 電子束蒸鍍系統36 3-3 實驗步驟與方法37 3-3-1 電子束微影製程37 3-2-2 感應式耦合電漿蝕刻37 3-2-3 電子束蒸鍍系統與金屬舉離製程38 3-4 分析與量測儀器簡介38 3-4-1 掃描式電子顯微鏡38 3-4-2 原子力顯微鏡39 3-4-3 光激發光譜儀40 3-4-4 微觀光激發光譜儀41 第四章 實驗結果與討論42 4-1 金屬材料的選擇42 4-2 金屬結構週期的設計47 4-3 孔洞結構深度的設計52 4-4 引入銀週期性結構以增益綠光發光二極體發光強度53 4-4-1結構的製作與表面形貌的檢測53 4-4-2微光光致螢光發光光譜測量59 4-5 引入銀奈米粒子以增益藍光發光二極體發光強度65 4-5-1結構的製作與表面形貌的檢測66 4-5-2微光光致螢光發光光譜測量71 4-6 引入更多的銀奈米粒子以增益藍光發光二極體發光強度77 4-6-1結構的製作與表面形貌的檢測78 4-6-2微光光致螢光發光光譜測量83 4-7 引入銀結構之藍光與綠光發光二極體比較90 第五章 總結98 5-1 總結論98 5-2 未來可研究方向100 第六章 參考文獻101

    [1] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).
    [2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 35, L74 (1996).
    [3] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
    [4] S. -M. Pan, R. -C. Tu, Y. -M. Fan, R. -C. Yeh, and J. -T. Hsu, IEEE Photon. Technol. Lett., 15, 649-651 (2003).
    [5] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, , Appl. Phys. Lett., 75, 1036-1038 (1999).
    [6] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater., 3, 601 (2004).
    [7] C.Y. Hwang, “Growth and Characterization of Gallium Nitride on (0001) sapphire by plasma Enhanced Atomic Layer Epitaxy and by Low Pressure Metaloganic Chemical Vapor Deposition”, Ph.D dissertation , Rutgers University, Piscataway, NJ (1995).
    [8] B. Gil, “Group Ⅲ Nitride Semiconductor Compounds”, Oxford, New York (1998).
    [9] 陳隆建, “發光二極體之原理與製程”,全華圖書股份有限公司 (2007).
    [10]史光國, “半導體發光二極體及固態照明”,全華圖書股份有限公司 (2005).
    [11] H. Raether, “Surface Plasmons on smooth and Rough Surfaces and on Gratings”, Springer-Verlag, New York (1986).
    [12] H. Raether, “Physics of Thin Film: Advances in Research and Development”, vol.9, Academic Press, Orlando (1976).
    [13] E. M. Purcell , Phys. Rev., 69, 681 (1946).
    [14] I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B, 60, 11564 (1999).
    [15] K. Okamoto and Y. Kawakami, IEEE. J. Sel. Top. Quant., 15, 4 (2009).
    [16] A. Köck, E. Gornik, M. Hauser, and M. Beinstingl, Appl. Phys. Lett., 57, 2327 (1990).
    [17] N. E. Hecker and R. A. Höpfel, Appl. Phys. Lett., 75, 1577 (1999).
    [18] A. Neogi, C.-W. Lee, and H. O. Everitt, Phys. Rev. B, 66, 153305 (2002).
    [19] K. Okamoto, I. Niki, and A. Scherer, Appl. Phys. Lett.,87, 071102 (2005).
    [20] C. -Y. Chen, D. -M. Yeh, Y. -C. Lu, and C. C. Yang, Appl. Phys. Lett., 89, 203113 (2006).
    [21] D. -M. Yeh, C. -Y. Chen, Y. -C. Lu, C. -F. Huang , and C. C. Yang, Nanotechnology, 18, 265402 (2007).
    [22] D. -M. Yeh, C. -F. Huang, C. -Y. Chen, Y. -C. Lu, and C. C. Yang, Nanotechnology, 19, 345201 (2008).
    [23] M. -K. Kwon, J. -Y. Kim, B. -H. Kim, I. -K. Park, C. -Y. Cho, C. -C. Byeon, and S. -J. Park, Adv. Mater., 20, 1253-1257 (2008).
    [24] K. -C. Shen, C. -Y. Chen, H. -L. Cheng, C. -F. Huang, Y. -W. Kiang, C. C. Yang, and Y. -J. Yang, Appl. Phys. Lett., 93, 231111(2008).
    [25] C. -Y. Cho, M. -K. Kwon, S. -J. Lee, S. -H. Han, J. -W. Kang, S. -E. Kang, D. -Y. Lee, and S. -J. Park, Nanotechnology, 21 ,205201(2010).
    [26] K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai,K. Nishizuka, Y. Kawakami, and A. Scherer, Proc. of SPIE ,Vol.5733(2005).
    [27] E. D. Palik, “Handbook of Optical Constants of Solids ”, Academic Press, San Diego (1985).
    [28] T. Kawashima, H. Yoshikawa, and S. Adachi, J. Appl. Phys. 82, 7 (1997).
    [29] V. V. Aristov, A. I. Erko, B. N. Gaifullin, A. A. Svintsov, S. I. Zaitsev, H. F. Raith, R. R. Jede, Microcircuit Eng. 17, 413 (1992).
    [30] A. Neogi, and H. Morkoç, Nanotechnology, 15, 1252 (2004).
    [31] Y.-H. Cho, G. H. Gainer, A. J. fisher, J. J. Song, S. keller, U. K. Mishra, and S. P. Denbaars, Appl. Phys. Lett., 73, 1370 (1998).
    [32] R. Singh, D. Doppalapudi, T. D. Moustatas, and L. T. Romano, Appl.Phys. Lett., 70, 1089 (1997).

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE