| 研究生: |
籃加純 Lan, Chia-Chun |
|---|---|
| 論文名稱: |
表面電漿子強化氮化銦鎵/氮化鎵發光二極體之製作分析 Fabrication and Analysis of Surface Plasmon Enhanced InGaN/GaN Based Light Emitting Diode |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、表面電漿子 |
| 外文關鍵詞: | GaN, Light Emitting Diode, Surface Plasmon |
| 相關次數: | 點閱:60 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了增益藍光與綠光氮化鎵發光二極體的發光效率,本研究藉由引入一創新的結構來引發表面電漿電磁波效應,以增強發光二極體的發光強度。而此結構主要為,利用電子束微影及感應式耦合電漿蝕刻製程在發光二極體的p型層上製作二維孔洞陣列,並利用電子束蒸鍍與金屬舉離製程於孔洞內填入銀的奈米結構,透過微觀光致螢光光譜探討已導入銀奈米結構的發光二極體之發光強度與波長的變化。實驗結果發現,綠光發光二極體在導入銀奈米結構於p型氮化鎵孔洞陣列後,此金屬結構可有效地引發表面電漿週期效應而使發光增強。在綠光發光二極體最多可達到180 %的增益效果,且發光波長與半高寬會因表面電漿效應,而產生藍位移與變寬的現象。對於藍光發光二極體,若欲藉表面電漿電磁波使發光強度產生有效的增益,銀奈米結構週期須相當小,製程上不易達到。本研究因而改引入銀奈米粒子於p型氮化鎵孔洞陣列,使在藍光發光二極體的發光強度上,最多可得到145 %的增強效果。實驗上發現在藍光發光二極體中,發光強度的增強主要來自銀奈米粒子本身所造成的微小週期與起伏,且隨著銀奈米粒子密度增加,表面電漿子數量越多,增益量也會隨之增大。綜論而言,無論是綠光或藍光發光二極體皆能夠藉由此結構的引入與銀奈米結構的設計,對其正面發光強度達到有效的增
益。
In this research, two-dimensional hole array on p-GaN layer of green and blue light emitting diodes was manufactured by e-beam lithography and inductively coupled plasma etching system. Then, e-beam evaporator and lift-off procedure was employed to fill the Ag nanostructures in the holes, and furthermore the variation of μ-PL intensity and wavelength position was explored through micro photoluminescence measurement. The results reveal that the contribution of the hole array and periodic Ag nanostructure to the enhancement of μ-PL intensity would reach 180% after introducing the Ag nanoparticles with sizes as the hole diameter into the periodic hole array on the p-GaN layer of the green light emitting diodes. Moreover, the wavelength position would be blue shifted and the full-width at half-maximum of the μ-PL peak would be broaden due to the effect of surface plasmon. Besides, the theoretical calculation, the contribution of enhancement from Ag nanostructures comes from the periodic effect of surface plasmon. With regard to the blue light emitting diodes, fine Ag nanoparticles (the diameters are much smaller than hole diameter) were introduced into the hole array on p-GaN layer, and the enhancement of luminous intensity would reach 145%. In addition, the part of the enhancement resulted from metal nanostructure comes from the Ag nanoparticles structures themselves; and further, as the density of the Ag nanoparticles increases, the enhancement of μ-PL intensity would be larger.
To sum up, the effective enhancement of the luminous intensity from the top can be achieved by the introduction of the structure and the design of Ag nanostructurse as the effective excitation of surface Plasmon for both the
green and blue light emitting diodes.
[1] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).
[2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 35, L74 (1996).
[3] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
[4] S. -M. Pan, R. -C. Tu, Y. -M. Fan, R. -C. Yeh, and J. -T. Hsu, IEEE Photon. Technol. Lett., 15, 649-651 (2003).
[5] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, , Appl. Phys. Lett., 75, 1036-1038 (1999).
[6] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater., 3, 601 (2004).
[7] C.Y. Hwang, “Growth and Characterization of Gallium Nitride on (0001) sapphire by plasma Enhanced Atomic Layer Epitaxy and by Low Pressure Metaloganic Chemical Vapor Deposition”, Ph.D dissertation , Rutgers University, Piscataway, NJ (1995).
[8] B. Gil, “Group Ⅲ Nitride Semiconductor Compounds”, Oxford, New York (1998).
[9] 陳隆建, “發光二極體之原理與製程”,全華圖書股份有限公司 (2007).
[10]史光國, “半導體發光二極體及固態照明”,全華圖書股份有限公司 (2005).
[11] H. Raether, “Surface Plasmons on smooth and Rough Surfaces and on Gratings”, Springer-Verlag, New York (1986).
[12] H. Raether, “Physics of Thin Film: Advances in Research and Development”, vol.9, Academic Press, Orlando (1976).
[13] E. M. Purcell , Phys. Rev., 69, 681 (1946).
[14] I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B, 60, 11564 (1999).
[15] K. Okamoto and Y. Kawakami, IEEE. J. Sel. Top. Quant., 15, 4 (2009).
[16] A. Köck, E. Gornik, M. Hauser, and M. Beinstingl, Appl. Phys. Lett., 57, 2327 (1990).
[17] N. E. Hecker and R. A. Höpfel, Appl. Phys. Lett., 75, 1577 (1999).
[18] A. Neogi, C.-W. Lee, and H. O. Everitt, Phys. Rev. B, 66, 153305 (2002).
[19] K. Okamoto, I. Niki, and A. Scherer, Appl. Phys. Lett.,87, 071102 (2005).
[20] C. -Y. Chen, D. -M. Yeh, Y. -C. Lu, and C. C. Yang, Appl. Phys. Lett., 89, 203113 (2006).
[21] D. -M. Yeh, C. -Y. Chen, Y. -C. Lu, C. -F. Huang , and C. C. Yang, Nanotechnology, 18, 265402 (2007).
[22] D. -M. Yeh, C. -F. Huang, C. -Y. Chen, Y. -C. Lu, and C. C. Yang, Nanotechnology, 19, 345201 (2008).
[23] M. -K. Kwon, J. -Y. Kim, B. -H. Kim, I. -K. Park, C. -Y. Cho, C. -C. Byeon, and S. -J. Park, Adv. Mater., 20, 1253-1257 (2008).
[24] K. -C. Shen, C. -Y. Chen, H. -L. Cheng, C. -F. Huang, Y. -W. Kiang, C. C. Yang, and Y. -J. Yang, Appl. Phys. Lett., 93, 231111(2008).
[25] C. -Y. Cho, M. -K. Kwon, S. -J. Lee, S. -H. Han, J. -W. Kang, S. -E. Kang, D. -Y. Lee, and S. -J. Park, Nanotechnology, 21 ,205201(2010).
[26] K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai,K. Nishizuka, Y. Kawakami, and A. Scherer, Proc. of SPIE ,Vol.5733(2005).
[27] E. D. Palik, “Handbook of Optical Constants of Solids ”, Academic Press, San Diego (1985).
[28] T. Kawashima, H. Yoshikawa, and S. Adachi, J. Appl. Phys. 82, 7 (1997).
[29] V. V. Aristov, A. I. Erko, B. N. Gaifullin, A. A. Svintsov, S. I. Zaitsev, H. F. Raith, R. R. Jede, Microcircuit Eng. 17, 413 (1992).
[30] A. Neogi, and H. Morkoç, Nanotechnology, 15, 1252 (2004).
[31] Y.-H. Cho, G. H. Gainer, A. J. fisher, J. J. Song, S. keller, U. K. Mishra, and S. P. Denbaars, Appl. Phys. Lett., 73, 1370 (1998).
[32] R. Singh, D. Doppalapudi, T. D. Moustatas, and L. T. Romano, Appl.Phys. Lett., 70, 1089 (1997).