簡易檢索 / 詳目顯示

研究生: 徐溢祥
Hsu, Yi-Hsiang
論文名稱: 電場應用於微藻電穿孔及培養之研究
Applications of electric field on the electroporation and culture of microalgae
指導教授: 王翔郁
Wang, Hsiang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 電穿孔小球藻脂質尼羅紅
外文關鍵詞: electroporation, Chlorella vulgaris, lipid, Nile red.
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討交流電穿孔的頻率及時間對於小球藻細胞染色的影響,並且利用電穿孔將小球藻細胞中油脂及其他分子釋放至細胞外,探討其應用在微藻細胞油脂定量的可能性。
    傳統微藻細胞內油脂含量的測定方法耗時且步驟繁雜,雖然可利用螢光染劑進行油脂含量測量,但某些微藻的細胞膜(壁)較厚,影響螢光染劑進入細胞內的效率,因而影響油脂定量的正確性,因此我們利用電穿孔技術增加細胞膜通透度使染劑可大量進入細胞。本研究藉由施加不同頻率的電場以及不同的電穿孔時間來觀察螢光染色的情形,結果發現10KHz, 2000V/cm的電場可使得固定化的小球藻細胞螢光亮度增加,而利用尼羅紅染色最佳的電穿孔時間為90秒、lipid TOX® Green為20秒。但考慮光褪色會造成觀察上的誤差,吾人利用流動式電穿孔裝置來減少小球藻曝露於激發光下的時間,在實驗的過程中發現流動式電穿孔裝置可釋放細胞內容物的現象,並且發現在頻率為10KHz 時,500V/cm以上的電場可以釋放細胞內容物,而且高細胞濃度的釋放效率較穩定。另外,在進行非流動式電穿孔實驗時,因為電場會導致溶液流動使細胞無法觀察,因此在螢光染色實驗中也探討細胞固定化的方法,利用不同的分散劑將纖維素塗佈在基質表面以固定小球藻細胞,最後發現利用酒精作分散劑有較好的結果。
    除了高電場造成的電穿孔現象以及其應用之外,本研究亦探討弱直流電場對小球藻培養的影響,發現電場可增加小球藻中的葉綠素及其他色素的含量,而油脂含量則與培養起始時的細胞數目有關,起始O.D.值為0.1的小球藻,在電場中脂質累積較多,而起始O.D.值為0.02的小球藻,其脂質反而較未通電的細胞少。

    This study presents the effects of alternating frequency and duration of electric field on the fluorescence labeling of Chlorella vulgaris by two lipid probes: Nile red and Lipid TOX® Green. The application of electroporation on releasing cellular contents is also investigated as well as the feasibility of this technique in quantifying cell compositions.
    Conventional gravimetric methods for quantifying lipid amounts inside microalgae are complicated and time consuming. Fluorescence detection of cellular lipids has been established decades ago; however, it is limited by the inconsistences of fluorescence intensity due to variations in cell membrane compositions. Therefore, this study aims to use electroporation to facilitate the transport of fluorogenic dyes into cells for consistent labeling outcomes. It is found that 10KHz, 2000V/cm was optimal for enhancing the fluorescence labeling of Chlorella vulgaris and optimal durations in electric field were 90 sec for Nile red and 20sec for lipid TOX® Green. To avoid photo-bleaching, we applied flow-through electroporation and discovered that the decay of cell fluorescence was contributed by not only photo-bleaching but also the release of cell contents. When electric field strength was higher than 500V/cm at 10KHz, cell contents can be effectively released and high cell density can provide stable releasing efficiency. Because alternating current electric field can result in dielectrophoretic flow, this study also optimized the cell fixation method to prevent cell movement during observations. Different dispersants were used to disperse cellulose for well surface coating. The results indicate that the mixture of alcohol and cellulose had better abilities for cell fixation.
    In additional to the electroporation of Chlorella vulgaris cells in high electric field strength, this study also investigates the effects of low electric field strength on the cell culture. We found that Chlorella vulgaris have larger amounts of pigment and chlorophyll contents inside electric field. The amount of cellular lipid depended on the starting cell density. When starting O.D.(at 682nm) value was 0.1, Chlorella vulgaris accumulated larger amount of lipid in the electric field; however, when starting OD value was 0.02, they had less cellular lipid amount than those cultured without external electric field.

    摘要 I Abstract II 目錄 IV 圖表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與方法 2 第二章 文獻回顧 4 2-1 藻類含油量偵測分析方法 4 2-2 利用螢光染劑進行細胞油脂定量 5 2-3 電穿孔技術 11 2-4 藻類簡介 16 第三章 實驗方法 20 3-1 玻片清潔 20 3-1-1 實驗藥品 20 3-1-2 藥品配置 20 3-1-3 實驗材料 20 3-1-4 實驗步驟 20 3-2 微電極製備 21 3-2-1 實驗藥品 21 3-2-2 實驗材料 22 3-2-3 實驗儀器 22 3-2-4 實驗步驟 22 3-3 微流道模具製備 26 3-3-1 實驗藥品 26 3-3-2 實驗材料 26 3-3-3 實驗儀器、裝置設置及參數設定 27 3-3-4 實驗步驟 28 3-4 高分子翻模 30 3-4-1 實驗藥品 30 3-4-2 藥品配置 31 3-4-3 實驗儀器 31 3-4-4 實驗步驟 31 3-5 裝置組裝 31 3-5-1 實驗儀器 31 3-5-2 實驗步驟 32 3-6 小球藻實驗固定化及電穿孔實驗 32 3-6-1 實驗藥品 32 3-6-2 藥品配置 33 3-6-3 實驗材料 34 3-6-4 實驗儀器、裝置設置及參數設定 34 3-6-5 實驗步驟 35 3-7 流動式電穿孔裝置及螢光亮度分析實驗 37 3-7-1 實驗藥品 37 3-7-2 藥品配置 38 3-7-3 實驗材料 39 3-7-4 實驗儀器、裝置設置及參數設定 39 3-7-5 實驗步驟 41 3-8 不同生理狀態的細胞螢光訊號分析實驗 43 3-8-1 實驗藥品 43 3-8-2 藥品配置 44 3-8-3 實驗材料 44 3-8-4 實驗儀器、裝置設置及參數設定 44 3-8-5 實驗步驟 44 3-9 以低頻電場釋放小球藻細胞內容物及光譜分析之實驗 45 3-9-1 實驗藥品 45 3-9-2 藥品配置 45 3-9-3 實驗材料 46 3-9-4 實驗儀器、裝置設置及參數設定 46 3-9-5 實驗步驟 47 3-10 通電培養小球藻實驗 48 3-10-1 實驗藥品 48 3-10-2 藥品配置 49 3-10-3 實驗材料 50 3-10-4 實驗儀器、裝置設置及參數設定 50 3-10-5 實驗步驟 51 3-11 分析方法 52 3-11-1 螢光亮度分析方法 52 3-11-2 分光光度計 53 第四章 結果與討論 54 4-1 固定化小球藻實驗 54 4-2 不同頻率的電場下小球藻螢光亮度分析 58 4-3 10KHz 2000V/cm電場下小球藻螢光亮度與時間關係分析 61 4-4 流動式電穿孔裝置及螢光亮度分析 64 4-5 不同生理狀態細胞螢光訊號分析 68 4-6 施加10KHz 2000V/cm電場後小球藻上清液吸收光譜分析 70 4-7 以10KHz 不同強度電場的電穿孔釋放小球藻內容物之研究 73 4-8 通電培養小球藻 76 第五章 結論 80 第六章 未來工作 83 參考文獻 85

    1. Li, Y., et al., Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and biotechnology, 2008. 81(4): p. 629-636.
    2. Liang, Y., N. Sarkany, and Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology letters, 2009. 31(7): p. 1043-1049.
    3. Yeh, K.L. and J.S. Chang, Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP‐31. Engineering in Life Sciences, 2010. 10(3): p. 201-208.
    4. 蘇吏千, 電穿孔於微藻染色之影響及其螢光染色分析. 成功大學化學工程學系碩博士班學位論文, 2011.
    5. Scurlock, J., et al., Utilising biomass crops as an energy source: a European perspective, in Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2. 1993, Springer. p. 499-518.
    6. Kosaric, N. and J. Velikonja, Liquid and gaseous fuels from biotechnology: challenge and opportunities. FEMS Microbiology Reviews, 1995. 16(2‐3): p. 111-142.
    7. Chen, W., et al., A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods, 2009. 77(1): p. 41-7.
    8. Bligh, E. and W.J. Dyer, A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 1959. 37(8): p. 911-917.
    9. Widjaja, A., C.-C. Chien, and Y.-H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(1): p. 13-20.
    10. Gao, C., et al., Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. Journal of microbiological methods, 2008. 75(3): p. 437-440.
    11. Eltgroth, M.L., R.L. Watwood, and G.V. Wolfe, Production and cellular localization of neutral long-chain lipids in the haptophyte algae isochrysis galbana and emiliania huxleyi 1. Journal of phycology, 2005. 41(5): p. 1000-1009.
    12. Cooksey, K.E., et al., Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. Journal of Microbiological Methods, 1987. 6(6): p. 333-345.
    13. Izard, J. and R.J. Limberger, Rapid screening method for quantitation of bacterial cell lipids from whole cells. Journal of microbiological methods, 2003. 55(2): p. 411-418.
    14. Smith, J.L., The staining of fat with basic aniline dyes. The Journal of Pathology and Bacteriology, 1906. 11(4): p. 415-420.
    15. Smith, J.L. and W. Mair, Fats and lipoids in relation to methods of staining. Skandinavisches Archiv Für Physiologie, 1911. 25(3): p. 247-255.
    16. Lakowicz, J.R., Principles of fluorescence spectroscopy. 2009: Springer.
    17. Greenspan, P., E.P. Mayer, and S.D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets. The Journal of Cell Biology, 1985. 100(3): p. 965-973.
    18. Raymond, P.H.K., Determination of Algal Cell Lipids Using Nile Red
    Using Microplates to Monitor Neutral Lipids in Chlorella Vulgaris. Applications Department, BiTek® Instruments, Inc., Winooski, VT, 2011.
    19. Genicot, G., et al., The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology, 2005. 63(4): p. 1181-1194.
    20. Evans, C.T., C. Ratledge, and S.C. Gilbert, A rapid screening method for lipid-accumulating yeast using a replica-printing technique. Journal of microbiological methods, 1985. 4(3): p. 203-210.
    21. Kimura, K., M. Yamaoka, and Y. Kamisaka, Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. Journal of microbiological methods, 2004. 56(3): p. 331-338.
    22. Kamisaka, Y., et al., Lipid bodies and lipid body formation in an oleaginous fungus, Mortierella ramanniana var. angulispora. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1999. 1438(2): p. 185-198.
    23. Elsey, D., et al., Fluorescent measurement of microalgal neutral lipids. Journal of microbiological methods, 2007. 68(3): p. 639-642.
    24. McGinnis, K., T. Dempster, and M. Sommerfeld, Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. Journal of Applied Phycology, 1997. 9(1): p. 19-24.
    25. 黃庭軒, 發展檢測藻類細胞含油量及藻種分離之微流體技術 Development of microfluidic techniques for microalgae cellular lipid quantification and strain separation. 成功大學化學工程學系碩博士班學位論文, 2011: p. 1-84.
    26. Chen, C., et al., Membrane electroporation theories: a review. Medical & Biological Engineering & Computing 2006. 44(1-2): p. 5-14.
    27. Stämpfli, R., Reversible electrical breakdown of the excitable membrane of a Ranvier node. Anais da Academia Brasileira de Ciências, 1958. 30: p. 57-63.
    28. Sale, A. and W. Hamilton, Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochimica et Biophysica Acta (BBA)-General Subjects, 1967. 148(3): p. 781-788.
    29. Crowley, J.M., Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophysical Journal, 1973. 13(7): p. 711-724.
    30. Neumann, E. and K. Rosenheck, Permeability changes induced by electric impulses in vesicular membranes. The Journal of membrane biology, 1972. 10(1): p. 279-290.
    31. Zimmermann, U., J. Vienken, and G. Pilwat, 363-Development of drug carrier systems: Electrical field induced effects in cell membranes. Bioelectrochemistry and Bioenergetics, 1980. 7(3): p. 553-574.
    32. Kinosita, K. and T.Y. Tsong, Formation and resealing of pores of controlled sizes in human erythrocyte membrane. 1977.
    33. Chang, D.C., Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. Guide to electroporation and electrofusion, 1992: p. 9-28.
    34. Baker, P. and D. Knight, A high-voltage technique for gaining rapid access to the interior of secretory cells [proceedings]. The Journal of physiology, 1978. 284: p. 30P.
    35. Barnett, A. and J.C. Weaver, Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991. 320(2): p. 163-182.
    36. Gauger, B. and F.W. Bentrup, A study of dielectric membrane breakdown in theFucus egg. The Journal of membrane biology, 1979. 48(3): p. 249-264.
    37. Tarek, M., Membrane electroporation: a molecular dynamics simulation. Biophysical journal, 2005. 88(6): p. 4045-4053.
    38. Teissie, J., M. Golzio, and M. Rols, Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochimica et Biophysica Acta (BBA)-General Subjects, 2005. 1724(3): p. 270-280.
    39. Weaver, J.C., Electroporation of cells and tissues. Plasma Science, IEEE Transactions on, 2000. 28(1): p. 24-33.
    40. Weaver, J.C., Electroporation of biological membranes from multicellular to nano scales. Dielectrics and Electrical Insulation, IEEE Transactions on, 2003. 10(5): p. 754-768.
    41. Alberts, B., Essential cell biology: an introduction to the molecular biology of the cell. Vol. 1. 1998: Garland Pub.
    42. Hoekstra, D., Cell lipids. 1994: Academic Pr.
    43. Weaver, J.C., Electroporation: a general phenomenon for manipulating cells and tissues. Journal of Cellular Biochemistry, 1993. 51: p. 426-426.
    44. Kotnik, T., F. Bobanović, and D. Miklavčič, Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochemistry and Bioenergetics, 1997. 43(2): p. 285-291.
    45. Abidor, I., et al., Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979. 104: p. 37-52.
    46. Benz, R., F. Beckers, and U. Zimmermann, Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. The Journal of membrane biology, 1979. 48(2): p. 181-204.
    47. Weaver, J.C. and Y.A. Chizmadzhev, Theory of electroporation: a review. Bioelectrochemistry and bioenergetics, 1996. 41(2): p. 135-160.
    48. Weaver, J.C. and R.A. Mintzer, Decreased bilayer stability due to transmembrane potentials. Physics Letters A, 1981. 86(1): p. 57-59.
    49. Wolf, H., et al., Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophysical journal, 1994. 66(2): p. 524-531.
    50. Hui, S.W., Effects of pulse length and strength on electroporation efficiency, in Plant Cell Electroporation and Electrofusion Protocols. 1995, Springer. p. 29-40.
    51. Jaroszeski, M., R. Gilbert, and R. Heller, Electrically mediated delivery of molecules to cells: electrochemotherapy, electrogenetherapy and transdermal delivery by electroporation. Totowa, NJ: Humana, 2000.
    52. Kotnik, T., et al., Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: Part I. Increased efficiency of permeabilization. Bioelectrochemistry, 2001. 54(1): p. 83-90.
    53. Puc, M., et al., Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry, 2003. 60(1): p. 1-10.
    54. 黃毓涵, 小球藻最適化連續式培養之研究. 成功大學化學工程學系碩博士班學位論文, 2009.
    55. Chisti, Y., Biodiesel from microalgae. Biotechnology advances, 2007. 25(3): p. 294-306.
    56. Cohen, Z., H. Norman, and Y. Heimer, Microalgae as a source of omega 3 fatty acids. World review of nutrition and dietetics, 1995. 77: p. 1.
    57. Xu, H., X. Miao, and Q. Wu, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 2006. 126(4): p. 499-507.
    58. Clarens, A.F., et al., Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 2010. 44(5): p. 1813-1819.
    59. Gavrilescu, M. and Y. Chisti, Biotechnology—a sustainable alternative for chemical industry. Biotechnology Advances, 2005. 23(7): p. 471-499.
    60. Molina Grima, E., et al., Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 2003. 20(7): p. 491-515.
    61. Pienkos, P.T. and A. Darzins, The promise and challenges of microalgal‐derived biofuels. Biofuels, Bioproducts and Biorefining, 2009. 3(4): p. 431-440.
    62. Radmer, R.J. and B.C. Parker, Commercial applications of algae: opportunities and constraints. Journal of Applied Phycology, 1994. 6(2): p. 93-98.
    63. Raja, R., et al., A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 2008. 34(2): p. 77-88.
    64. Singh, S., B.N. Kate, and U. Banerjee, Bioactive compounds from cyanobacteria and microalgae: an overview. Critical reviews in biotechnology, 2005. 25(3): p. 73-95.
    65. Spolaore, P., et al., Commercial applications of microalgae. Journal of bioscience and bioengineering, 2006. 101(2): p. 87-96.
    66. Wijffels, R.H., Potential of sponges and microalgae for marine biotechnology. Trends in biotechnology, 2008. 26(1): p. 26-31.
    67. Qiang, H., D. Faiman, and A. Richmond, Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. Journal of fermentation and bioengineering, 1998. 85(2): p. 230-236.
    68. Richmond, A., Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 2004. 512(1-3): p. 33-37.
    69. Ogbonna, J.C. and H. Tanaka, Light requirement and photosynthetic cell cultivation–Development of processes for efficient light utilization in photobioreactors. Journal of applied phycology, 2000. 12(3-5): p. 207-218.
    70. Endo, T., U. Schreiber, and K. Asada, Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant and cell physiology, 1995. 36(7): p. 1253-1258.
    71. Reitan, K.I., J.R. Rainuzzo, and Y. Olsen, Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology, 1994. 30(6): p. 972-979.
    72. Renaud, S., et al., Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology, 1991. 3(1): p. 43-53.
    73. Rubio, F.C., et al., Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and bioengineering, 1999. 62(1): p. 71-86.
    74. Sobczuk, T.M., et al., Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and bioengineering, 2000. 67(4): p. 465-475.
    75. Suen, Y., et al., Total lipid production of the green alga nannochloropsis sp. QII under different nitrogen regimes. Journal of phycology, 1987. 23(s2): p. 289-296.
    76. Yamaberi, K., M. Takagi, and T. Yoshida, Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. Journal of Marine Biotechnology, 1998. 6: p. 44-48.
    77. Turpin, D.H., Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 1991. 27(1): p. 14-20.
    78. Chang, Y.H.D., A.J. Grodzinsky, and D.I. Wang, Augmentation of mass transfer through electrical means for hydrogel‐entrapped Escherichia coli cultivation. Biotechnology and bioengineering, 1995. 48(2): p. 149-157.
    79. Nakanishi, K., et al., Effect of electric current on growth and alcohol production by yeast cells. Journal of fermentation and bioengineering, 1998. 85(2): p. 250-253.
    80. Hunt, R.W., et al., Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications. International journal of molecular sciences, 2009. 10(10): p. 4515-4558.
    81. Zykwinska, A.W., et al., Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology, 2005. 139(1): p. 397-407.
    82. A. Zykwinska, J.-F.T., C. Garnier and M.-C. Ralet, Interactions between pectin and cellulose.

    下載圖示 校內:2018-09-05公開
    校外:2018-09-05公開
    QR CODE