簡易檢索 / 詳目顯示

研究生: 徐意庭
Syu, Yi-Ting
論文名稱: 以逆運算法與總容量法估算錫鉛合金方向性凝固之界面熱傳係數
Metal-Mold Interfacial Heat Transfer Coefficient Estimation of Sn-Pb alloy in Directional Solidification by Using Inverse and Lumped Capacitance Methods
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 155
中文關鍵詞: 方向性凝固界面熱傳係數逆運算法多段式總容量法
外文關鍵詞: directional solidification, interfacial heat transfer coefficient, inverse method, lumped capacitance method
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 方向性凝固是工業界相當重要的製程技術,由於一般難以量測鑄件與模壁間之熱通量及其暫態變化,若要得到精確的物理量,則必須付出成本高的代價,故鑄件品質都半靠經驗掌握。
    本研究針對純錫及錫鉛合金(Sn-10wt%.Pb),透過逆運算法及多段式總容量法搭配實驗數據來估算其於方向性凝固過程中界面熱傳係數隨時間的變化。為確保其估算結果具有可行性,首先進行無相變化暫態熱傳問題的計算,其次在求解含有相變化的史蒂芬問題、紐曼問題,最後再將上述問題作延伸估算界面熱傳係數及求解溫度場。
    金相試驗在材料評估的工作上扮演著重要的角色,為提高材料之使用壽命,本研究利用冷激銅盒提供一軸向溫度梯度,使晶粒成長為沿著熱通量方向生長的柱狀晶。此外透過實驗量測之溫度數據,繪製冷卻曲線圖、溫度梯度圖、各位置離開加熱區時間及凝固時間關係圖,並搭配巨觀顯微組織、微觀金相組織,探討上述參數對晶體形態、底部等軸晶產生區、優選方向競爭區、晶粒成長區、頂部空氣接觸區大小之影響。
    由結果顯示,模擬值與實驗值差異極小,推論逆運算法及總容量法求解含有相變化的問題有良好的估算結果。

    Directional solidification is a very important industrial manufacturing technology. Because it is difficult to measure the heat flux transferred from the casting to its mold, the heat-transfer estimation needs theoretical methods and numerical simulations. In the study, the Beck inverse and the lumped capacitance methods are applied to experimentally measured temperatures for predicting the interfacial heat transfer coefficient between the casting and its mold. To ensure the feasibility of the numerical analysis, some tested problems with known solutions are used, such as the Stefan and Neumann problems. In the numerical analysis, the effective specific heat method and the enthalpy/effective specific heat scheme are employed to deal with the latent-heat release of phase change. Besides, the effects of experimental parameters on the morphology of crystals are also investigated. From the results, it can be found that the resulting temperature distributions with the estimated the interfacial heat transfer coefficients are consistent with the temperature measurements.

    摘要 i Abstract ii 致謝 ix 目錄 x 表目錄 xv 圖目錄 xvi 符號 xxii 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 4 第二章 凝固理論模式 15 2-1 凝固過程 15 2-1-1成核階段(Nucleation) 16 2-1-1-1均質成核(Homogenous Nucleation) 16 2-1-1-2異質成核(Heterogeneous Nucleation) 18 2-1-2 晶粒成長與侵犯階段(Growth and Impingement) 18 2-1-3晶粒構造形成與晶粒成長型態 19 2-2方向性凝固模式 21 第三章 實驗設備及方法 30 3-1實驗步驟 30 3-2實驗參數 31 3-3實驗設備 32 3-3-1鑄件外模 32 3-3-2熔解爐 32 3-3-3熱電偶點焊設備 33 3-3-4方向性凝固載台及冷激端設備 33 3-3-5加熱及溫度控制設備 34 3-3-6恆溫循環水槽 34 3-3-7溫度擷取設備 35 3-3-8砂輪切割機 35 3-3-9研磨拋光機 36 3-3-10光學顯微鏡 36 3-4材料分析 36 3-4-1金相觀察之實驗步驟與方法 37 3-4-2實驗數據整理 39 第四章 數值分析 53 4-1線性之暫態熱傳模式 53 4-1-1直接問題 54 4-1-2逆向問題 54 4-2史蒂芬問題(Stefan Problem) 55 4-3紐曼問題(Neumann Problem) 56 4-4數值方法 58 4-4-1 有限差分法(Finite Difference method) 58 4-4-1-1一維暫態熱傳問題 59 4-4-1-2二維暫態熱傳問題 60 4-4-2潛熱效應之計算方法 62 4-4-2-1純金屬(Sn) 62 4-4-2-2二元合金(Sn-10wt%Pb) 65 4-4-3多段式總容量分析法 66 4-5 Beck逆運算法 68 4-6連續迭代法(Successive substitution method) 70 第五章 結果與討論 82 5-1無相變化之暫態熱傳問題 82 5-2史蒂芬問題 83 5-3紐曼問題 83 5-4 Beck逆運算求解無相變化熱傳問題 84 5-5逆運算實驗數據求解界面熱傳係數 85 5-5-1純錫底部邊界之界面熱傳係數與溫度模擬 86 5-5-2純錫頂部邊界之界面熱傳係數與溫度模擬 87 5-5-3錫鉛合金底部邊界之界面熱傳係數與溫度模擬 88 5-5-4錫鉛合金頂部邊界之界面熱傳係數與溫度模擬 89 5-6多段式總容量法求解界面熱傳係數與溫度模擬 90 5-7鑄件之暫態溫度量測 92 5-7-1鑄件之冷卻曲線圖分析 92 5-7-2鑄件之溫度梯度圖分析 93 5-7-3鑄件各位置離開加熱區時間和凝固時間之比較 94 5-7-4鑄件暫態冷卻水溫度比較 95 5-8鑄件之巨觀金相組織觀察 95 5-9鑄件之微觀金相組織觀察 96 5-9-1縱切面之微觀金相組織分類 97 5-9-2縱切面之微觀金相區域比較 99 第六章 結論 132 6-1估算界面熱傳係數 132 6-2鑄件之暫態溫度量測 133 6-3巨觀與微觀金相組織 134 參考文獻 135 附錄A 溫度場之差分方程式 138 附錄B 錫鉛合金之潛熱推導 154

    [1]林文和, 鑄造學: 高立圖書有限公司, 1998.
    [2]林明宗, 鑄造學: 長諾資訊圖書公司, 1993.
    [3]張晉昌, 鑄造學: 科友圖書股份有限公司, 1998.
    [4]W.Kurz and D.J.Fisher, Fundamental Of Solidification. Trans Tech Publications,Switzerland, 1989.
    [5]M.Rettenmayer and H.E.Exner, Directional solidification. Materials Science and Technology, 2006.
    [6]J. V. Beck, Inverse heat conduction: Ill-posed problems: James Beck, 1985.
    [7]O. M. Alifanov and O. M. Alifanov, Inverse heat transfer problems: Springer, 1994.
    [8]S.T.Chiang, Computational Fluid Dynamics For Engineers: Engineer Education System, 1993.
    [9]Y.-R. Chen, L.-S. Chao, and L.-S. Lin, "Prediction of thermal properties in a solidification process," Materials Transactions, vol. 48, pp. 2304-2311, Sep 2007.
    [10]Y.-C. Liu and L.-S. Chao, "Modified effective specific heat method of solidification problems," Materials Transactions, vol. 47, pp. 2737-2744, Nov 2006.
    [11]N. Shumakov, "A method for the experimental study of the process of heating a solid body," Soviet Physics-Technical Physics, vol. 2, pp. 771-781, 1957.
    [12]G. Stolz, "Numerical solutions to an inverse problem of heat conduction for simple shapes," Journal of heat transfer, vol. 82, pp. 20-25, 1960.
    [13]E. Sparrow, A. Haji-Sheikh, and T. Lundgren, "The inverse problem in transient heat conduction," Journal of Applied Mechanics, vol. 31, pp. 369-375, 1964.
    [14]J. V. Beck, "Surface heat flux determination using an integral method," Nuclear Engineering and Design, vol. 7, pp. 170-178, 1968.
    [15]J. V. Beck, "Nonlinear estimation applied to the nonlinear inverse heat conduction problem," International Journal of Heat and Mass Transfer, vol. 13, pp. 703-716, 1970.
    [16]Y. Jarny, M. Ozisik, and J. Bardon, "A general optimization method using adjoint equation for solving multidimensional inverse heat conduction," International Journal of Heat and Mass Transfer, vol. 34, pp. 2911-2919, 1991.
    [17]W. Griffiths, "The heat-transfer coefficient during the unidirectional solidification of an Al-Si alloy casting," Metallurgical and Materials Transactions B, vol. 30, pp. 473-482, 1999.
    [18]N. Cheung, I. L. Ferreira, M. M. Pariona, J. M. V. Quaresma, and A. Garcia, "Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings," Materials & Design, vol. 30, pp. 3592-3601, 2009.
    [19]A. Abbas Nejad, M. J. Maghrebi, H. Basirat Tabrizi, Y. Heng, A. Mhamdi, and W. Marquardt, "Optimal operation of alloy material in solidification processes with inverse heat transfer," International Communications in Heat and Mass Transfer, vol. 37, pp. 711-716, 2010.
    [20]孫憲琪, "濕砂模與金屬界面之熱傳模式研究暨鑄造充填的模擬分析," 成功大學工程科學系碩博士班學位論文, pp. 1-128, 2009.
    [21]陳毓儒, "金屬之熱傳導係數預測," 中華民國第二十七屆力學會議, 2003十二月.
    [22]C. Klaren, J. Verhoeven, and R. Trivedi, "Primary dendrite spacing of lead dendrites in Pb-Sn and Pb-Au alloys," Metallurgical transactions A, vol. 11, pp. 1853-1861, 1980.
    [23]D. McCartney and J. Hunt, "Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys," Acta Metallurgica, vol. 29, pp. 1851-1863, 1981.
    [24]O. L. Rocha, C. A. Siqueira, and A. Garcia, "Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys," Materials Science and Engineering: A, vol. 361, pp. 111-118, 2003.
    [25]C. A. Siqueira, N. Cheung, and A. Garcia, "The columnar to equiaxed transition during solidification of Sn–Pb alloys," Journal of Alloys and Compounds, vol. 351, pp. 126-134, 2003.
    [26]J. E. Spinelli, I. L. Ferreira, and A. Garcia, "Influence of melt convection on the columnar to equiaxed transition and microstructure of downward unsteady-state directionally solidified Sn–Pb alloys," Journal of Alloys and Compounds, vol. 384, pp. 217-226, 2004.
    [27]F. Sá, O. L. Rocha, C. A. Siqueira, and A. Garcia, "The effect of solidification variables on tertiary dendrite arm spacing in unsteady-state directional solidification of Sn–Pb and Al–Cu alloys," Materials Science and Engineering: A, vol. 373, pp. 131-138, 2004.
    [28]陳佩宜, "方向性凝固之界面熱傳與溫度場分析," 成功大學工程科學系碩博士班學位論文, pp. 1-137, 2011.
    [29]吳俐潔, "以方向性凝固製備錫鉛合金之不同參數對其凝固結構之影響分析," 成功大學工程科學系碩博士班學位論文, pp. 1-144, 2013.
    [30]林盈佐, "凝固顯微組織與模式分析," 成功大學工程科學系碩博士班學位論文, pp. 1-68, 1998.
    [31]J. Willian D. Callister, "Fundamentals of Materials Science and Engineering," 2004.
    [32]韋孟育, 材料實驗方法-金相分析技術: 金華科技圖書股份有限公司, 1990.
    [33]施冠呈, "方向性凝固之金屬邊界等效熱傳係數的逆向分析," 成功大學工程科學系碩博士班學位論文, pp. 1-86, 2013.
    [34]M. Martorano and J. Capocchi, "Heat transfer coefficient at the metal–mould interface in the unidirectional solidification of Cu–8% Sn alloys," International Journal of Heat and Mass Transfer, vol. 43, pp. 2541-2552, 2000.
    [35]H.-C. Sun and L.-S. Chao, "An Investigation into the Effective Heat Transfer Coefficient in the Casting of Aluminum in a Green-Sand Mold," Materials Transactions, vol. 50, pp. 1396-1403, 2009.
    [36]趙上億, "錫鉛合金方向性凝固製程之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-95, 2013.
    [37]K. Ho and R. D. Pehlke, "Metal-mold interfacial heat transfer," Metallurgical Transactions B, vol. 16, pp. 585-594, 1985.
    [38]F. Lau, W. Lee, S. Xiong, and B. Liu, "A study of the interfacial heat transfer between an iron casting and a metallic mould," Journal of Materials Processing Technology, vol. 79, pp. 25-29, 1998.
    [39]H.-C. Sun and L.-S. Chao, "Prediction of interfacial heat transfer coefficients by using a modified lump capacitance method for aluminum casting in a green sand mold," ISIJ international, vol. 47, pp. 1753-1758, 2007.
    [40]C. A. Santos, J. Quaresma, and A. Garcia, "Determination of transient interfacial heat transfer coefficients in chill mold castings," Journal of Alloys and Compounds, vol. 319, pp. 174-186, 2001.
    [41]A. A. Ranjbar, M. Ezzati, and M. Famouri, "Optimization of experimental design for an inverse estimation of the metal-mold heat transfer coefficient in the solidification of Sn–10% Pb," Journal of Materials Processing Technology, vol. 209, pp. 5611-5617, 2009.

    下載圖示 校內:2019-09-03公開
    校外:2019-09-03公開
    QR CODE