| 研究生: |
徐意庭 Syu, Yi-Ting |
|---|---|
| 論文名稱: |
以逆運算法與總容量法估算錫鉛合金方向性凝固之界面熱傳係數 Metal-Mold Interfacial Heat Transfer Coefficient Estimation of Sn-Pb alloy in Directional Solidification by Using Inverse and Lumped Capacitance Methods |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 方向性凝固 、界面熱傳係數 、逆運算法 、多段式總容量法 |
| 外文關鍵詞: | directional solidification, interfacial heat transfer coefficient, inverse method, lumped capacitance method |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
方向性凝固是工業界相當重要的製程技術,由於一般難以量測鑄件與模壁間之熱通量及其暫態變化,若要得到精確的物理量,則必須付出成本高的代價,故鑄件品質都半靠經驗掌握。
本研究針對純錫及錫鉛合金(Sn-10wt%.Pb),透過逆運算法及多段式總容量法搭配實驗數據來估算其於方向性凝固過程中界面熱傳係數隨時間的變化。為確保其估算結果具有可行性,首先進行無相變化暫態熱傳問題的計算,其次在求解含有相變化的史蒂芬問題、紐曼問題,最後再將上述問題作延伸估算界面熱傳係數及求解溫度場。
金相試驗在材料評估的工作上扮演著重要的角色,為提高材料之使用壽命,本研究利用冷激銅盒提供一軸向溫度梯度,使晶粒成長為沿著熱通量方向生長的柱狀晶。此外透過實驗量測之溫度數據,繪製冷卻曲線圖、溫度梯度圖、各位置離開加熱區時間及凝固時間關係圖,並搭配巨觀顯微組織、微觀金相組織,探討上述參數對晶體形態、底部等軸晶產生區、優選方向競爭區、晶粒成長區、頂部空氣接觸區大小之影響。
由結果顯示,模擬值與實驗值差異極小,推論逆運算法及總容量法求解含有相變化的問題有良好的估算結果。
Directional solidification is a very important industrial manufacturing technology. Because it is difficult to measure the heat flux transferred from the casting to its mold, the heat-transfer estimation needs theoretical methods and numerical simulations. In the study, the Beck inverse and the lumped capacitance methods are applied to experimentally measured temperatures for predicting the interfacial heat transfer coefficient between the casting and its mold. To ensure the feasibility of the numerical analysis, some tested problems with known solutions are used, such as the Stefan and Neumann problems. In the numerical analysis, the effective specific heat method and the enthalpy/effective specific heat scheme are employed to deal with the latent-heat release of phase change. Besides, the effects of experimental parameters on the morphology of crystals are also investigated. From the results, it can be found that the resulting temperature distributions with the estimated the interfacial heat transfer coefficients are consistent with the temperature measurements.
[1]林文和, 鑄造學: 高立圖書有限公司, 1998.
[2]林明宗, 鑄造學: 長諾資訊圖書公司, 1993.
[3]張晉昌, 鑄造學: 科友圖書股份有限公司, 1998.
[4]W.Kurz and D.J.Fisher, Fundamental Of Solidification. Trans Tech Publications,Switzerland, 1989.
[5]M.Rettenmayer and H.E.Exner, Directional solidification. Materials Science and Technology, 2006.
[6]J. V. Beck, Inverse heat conduction: Ill-posed problems: James Beck, 1985.
[7]O. M. Alifanov and O. M. Alifanov, Inverse heat transfer problems: Springer, 1994.
[8]S.T.Chiang, Computational Fluid Dynamics For Engineers: Engineer Education System, 1993.
[9]Y.-R. Chen, L.-S. Chao, and L.-S. Lin, "Prediction of thermal properties in a solidification process," Materials Transactions, vol. 48, pp. 2304-2311, Sep 2007.
[10]Y.-C. Liu and L.-S. Chao, "Modified effective specific heat method of solidification problems," Materials Transactions, vol. 47, pp. 2737-2744, Nov 2006.
[11]N. Shumakov, "A method for the experimental study of the process of heating a solid body," Soviet Physics-Technical Physics, vol. 2, pp. 771-781, 1957.
[12]G. Stolz, "Numerical solutions to an inverse problem of heat conduction for simple shapes," Journal of heat transfer, vol. 82, pp. 20-25, 1960.
[13]E. Sparrow, A. Haji-Sheikh, and T. Lundgren, "The inverse problem in transient heat conduction," Journal of Applied Mechanics, vol. 31, pp. 369-375, 1964.
[14]J. V. Beck, "Surface heat flux determination using an integral method," Nuclear Engineering and Design, vol. 7, pp. 170-178, 1968.
[15]J. V. Beck, "Nonlinear estimation applied to the nonlinear inverse heat conduction problem," International Journal of Heat and Mass Transfer, vol. 13, pp. 703-716, 1970.
[16]Y. Jarny, M. Ozisik, and J. Bardon, "A general optimization method using adjoint equation for solving multidimensional inverse heat conduction," International Journal of Heat and Mass Transfer, vol. 34, pp. 2911-2919, 1991.
[17]W. Griffiths, "The heat-transfer coefficient during the unidirectional solidification of an Al-Si alloy casting," Metallurgical and Materials Transactions B, vol. 30, pp. 473-482, 1999.
[18]N. Cheung, I. L. Ferreira, M. M. Pariona, J. M. V. Quaresma, and A. Garcia, "Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings," Materials & Design, vol. 30, pp. 3592-3601, 2009.
[19]A. Abbas Nejad, M. J. Maghrebi, H. Basirat Tabrizi, Y. Heng, A. Mhamdi, and W. Marquardt, "Optimal operation of alloy material in solidification processes with inverse heat transfer," International Communications in Heat and Mass Transfer, vol. 37, pp. 711-716, 2010.
[20]孫憲琪, "濕砂模與金屬界面之熱傳模式研究暨鑄造充填的模擬分析," 成功大學工程科學系碩博士班學位論文, pp. 1-128, 2009.
[21]陳毓儒, "金屬之熱傳導係數預測," 中華民國第二十七屆力學會議, 2003十二月.
[22]C. Klaren, J. Verhoeven, and R. Trivedi, "Primary dendrite spacing of lead dendrites in Pb-Sn and Pb-Au alloys," Metallurgical transactions A, vol. 11, pp. 1853-1861, 1980.
[23]D. McCartney and J. Hunt, "Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys," Acta Metallurgica, vol. 29, pp. 1851-1863, 1981.
[24]O. L. Rocha, C. A. Siqueira, and A. Garcia, "Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys," Materials Science and Engineering: A, vol. 361, pp. 111-118, 2003.
[25]C. A. Siqueira, N. Cheung, and A. Garcia, "The columnar to equiaxed transition during solidification of Sn–Pb alloys," Journal of Alloys and Compounds, vol. 351, pp. 126-134, 2003.
[26]J. E. Spinelli, I. L. Ferreira, and A. Garcia, "Influence of melt convection on the columnar to equiaxed transition and microstructure of downward unsteady-state directionally solidified Sn–Pb alloys," Journal of Alloys and Compounds, vol. 384, pp. 217-226, 2004.
[27]F. Sá, O. L. Rocha, C. A. Siqueira, and A. Garcia, "The effect of solidification variables on tertiary dendrite arm spacing in unsteady-state directional solidification of Sn–Pb and Al–Cu alloys," Materials Science and Engineering: A, vol. 373, pp. 131-138, 2004.
[28]陳佩宜, "方向性凝固之界面熱傳與溫度場分析," 成功大學工程科學系碩博士班學位論文, pp. 1-137, 2011.
[29]吳俐潔, "以方向性凝固製備錫鉛合金之不同參數對其凝固結構之影響分析," 成功大學工程科學系碩博士班學位論文, pp. 1-144, 2013.
[30]林盈佐, "凝固顯微組織與模式分析," 成功大學工程科學系碩博士班學位論文, pp. 1-68, 1998.
[31]J. Willian D. Callister, "Fundamentals of Materials Science and Engineering," 2004.
[32]韋孟育, 材料實驗方法-金相分析技術: 金華科技圖書股份有限公司, 1990.
[33]施冠呈, "方向性凝固之金屬邊界等效熱傳係數的逆向分析," 成功大學工程科學系碩博士班學位論文, pp. 1-86, 2013.
[34]M. Martorano and J. Capocchi, "Heat transfer coefficient at the metal–mould interface in the unidirectional solidification of Cu–8% Sn alloys," International Journal of Heat and Mass Transfer, vol. 43, pp. 2541-2552, 2000.
[35]H.-C. Sun and L.-S. Chao, "An Investigation into the Effective Heat Transfer Coefficient in the Casting of Aluminum in a Green-Sand Mold," Materials Transactions, vol. 50, pp. 1396-1403, 2009.
[36]趙上億, "錫鉛合金方向性凝固製程之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-95, 2013.
[37]K. Ho and R. D. Pehlke, "Metal-mold interfacial heat transfer," Metallurgical Transactions B, vol. 16, pp. 585-594, 1985.
[38]F. Lau, W. Lee, S. Xiong, and B. Liu, "A study of the interfacial heat transfer between an iron casting and a metallic mould," Journal of Materials Processing Technology, vol. 79, pp. 25-29, 1998.
[39]H.-C. Sun and L.-S. Chao, "Prediction of interfacial heat transfer coefficients by using a modified lump capacitance method for aluminum casting in a green sand mold," ISIJ international, vol. 47, pp. 1753-1758, 2007.
[40]C. A. Santos, J. Quaresma, and A. Garcia, "Determination of transient interfacial heat transfer coefficients in chill mold castings," Journal of Alloys and Compounds, vol. 319, pp. 174-186, 2001.
[41]A. A. Ranjbar, M. Ezzati, and M. Famouri, "Optimization of experimental design for an inverse estimation of the metal-mold heat transfer coefficient in the solidification of Sn–10% Pb," Journal of Materials Processing Technology, vol. 209, pp. 5611-5617, 2009.