簡易檢索 / 詳目顯示

研究生: 林俊吉
Lin, Jyun-Ji
論文名稱: 都市垃圾焚化爐冷啟動過程排放多氯聯苯醚之研究:監測與控制
Emissions of PCDEs during the Cold-Start of a Municipal Solid Waste Incinerator: Monitoring and Control
指導教授: 林達昌
Lin, Ta-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 71
中文關鍵詞: 大型都市垃圾焚化爐冷啟動多氯聯苯醚
外文關鍵詞: MSWIs, cold-start, PCDEs
相關次數: 點閱:62下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的,為解決大型都市垃圾焚化爐冷啟動期間高濃度多氯聯苯醚(PCDEs)之生成與排放問題。本研究於A廠兩次起爐期間(3號爐及2號爐)採用縮短燃燒室於200~450°C之升溫時間以及提前注入活性碳、石灰乳泥作為起爐PCDEs控制技術,並進行煙道廢氣PCDEs之採樣與分析,為評估減量成效,另選擇採用一般標準起爐程序之大型都市焚化爐B廠做為比較。起爐期間A廠之3號爐及2號爐起爐期間分別採樣4個(A~D)及6個(A~F)樣品。
    研究結果顯示,A廠於兩次起爐中期時PCDEs濃度開始上升;此時燃燒室溫度達到231°C~406°C,其位於PCDEs de novo 生成溫度區間(250°C ~450°C)。當A廠開始進行廢棄物進料,燃燒不完全造成PCDEs濃度皆大幅上升至最高值(三號爐及二號爐分別為0.0994 ng/Nm3及0.134 ng/Nm3)。此外,過熱器溫度和節熱器溫度亦位於PCDEs de novo生成溫度區間,亦會造成PCDEs生成。經計算後,估計3號爐及二號爐於起爐期間之PCDEs 排放總量分別為0.0664 mg及0.0486 mg。比較發現,採用起爐PCDEs控制技術之A廠其兩次起爐期間PCDEs之最高濃度及排放量分別較B廠下降98.7~99.0%及97.9~98.4%。
    因本研究於現行運作之A廠所進行,所採行之起爐PCDEs控制技術可實際應用,不須更動硬體設施,而輔助燃料噴嘴堵塞清洗及提早活性碳及石灰乳泥進料時間亦不影響操作成本。此外,A廠其爐體與空氣污染防制設備與國內其他焚化廠均相似,故未來可將此控制技術進行市場化推行。

    The aim of this study is to solve the problem of extremely high polychlorinated diphenyl ethers (PCDEs) concentrations and formation during cold-start procedure of municipal solid waste incinerators (MSWIs). In this study, we proposed control technologies, including shortening the heating time of combustion between 200-450°C and advancing the injecting times of activated carbon and lime, to abate high emissions of combustion-originated PCDEs during the cold-start procedure. PCDE emissions of two MSWIs, one adopting proposed control technologies (MSWI-A) and the other with standard start-up procedure (MSWI-B), were compared to evaluate the effect of reduction on PCDEs. Stack flue gases sampling were carried on the incinerator 3 and 2 of MSWI-A during cold-start trials and a total of four (sample A–D) and six samples (sample A–F) were collected, respectively.
    The results showed that the total PCDE concentrations rose in the middle stage of two cold-start trials of MSWI-A. At that time the temperature of combustion chamber reached 231°C–406°C, which was in the temperature region of de novo synthesis (250°C–450°C). After that, the waste feeding resulted in the incomplete combustion condition, causing the drastic elevation of total PCDE concentrations (0.0994 ng/Nm3 for incinerator 3 and 0.134 ng/Nm3 for incinerator 2). Furthermore, the temperatures in the inlet of superheater and economizer were also in the temperature region of de novo synthesis, which may resulted in the formation of PCDEs. After calculating, the estimated PCDE emission quantities of MSWI-A during the first and the second start-up trials were 0.0664 mg and 0.0486 mg, respectively. By adopting the control technologies, the highest PCDE concentrations and PCDE emission quantities of MSWI-A during two cold-start trials were reduced by 98.7–99.0% and 98.4–98.4%, respectively, compared to those of MSWI-B.
    This study was carried out at the MSWI which is in operation. The adopted measures can be practically applied without modifying any hardware facilities. Cleaning stoppage of auxiliary fuel nozzle and advancing the injecting times of activated carbon and lime will not affect the operational cost. Furthermore, the furnaces and air pollution control devices (APCDs) of MSWI-A are similar to those of other MSWIs in Taiwan. Therefore, the control technologies proposed in this study can be applied to other MSWIs in the future.

    摘要 I Abstract III 誌謝 V Contents VI List of tables VIII List of figures X Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Introduction of PCDEs 4 2.1.1 Structure and Nomenclature 4 2.1.2 Physico-chemical Properties 6 2.1.3 Emission Sources 9 2.1.4 Toxicity 13 2.2 Reactions of PCDEs 14 2.2.1 Photochemical Reactions of PCDEs 14 2.2.2 Thermal Reactions of PCDEs 15 2.3 Extremely High POP Emissions during Start-up of MSWIs 16 Chapter 3 Experiment Equipment and Methods 18 3.1 PCDE Control Technologies 18 3.2 Sampling Plan 22 3.3 Sampling Equipment 29 3.4 Analyses of PCDEs 32 3.4.1 Sample Extraction and Cleanup 32 3.4.2 GC/MS Analysis 33 3.5 Quality assurance and quality control (QA/QC) 35 Chapter 4 Results and Discussion 37 4.1 PCDE Concentrations in the Stack Flue Gases of MSWIs during Cold-start Procedure 37 4.2 The PCDE Congener Profiles of Stack Flue Gases of MSWIs during Cold-start Procedure 44 4.3 The PCDE Emission Rates and Emission Factor of MSWIs during Cold-start Procedure 50 4.4 The Correlation between total PCDE Concentrations in the Stack Flue Gases and Operating Parameters of MSWI 56 4.5 Influence of PCDE Control Technologies on the PCDE Concentration and PCDE Emission Quantities during Cold- start Procedure 61 Chapter 5 Conclusions and Suggestions 63 5.1 Conclusions 63 5.2 Suggestions 64 References 65

    Aittola, J.-P., Paasivirta, J., Vattulainen, A., Sinkkonen, S., Koistinen, J., & Tarhanen, J. (1996), “Formation of chloroaromatics at a metal reclamation plant and efficiency of stack filter in their removal from emission”, Chemosphere, 32(1), pp.99-108.
    Albro, P. W., & Parker, C. E. (1980), “General approach to the fractionation and class determination of complex mixtures of chlorinated aromatic compounds”, J. Chromatogr. A, 197(2), pp.155-169.
    Ballschmiter, K., Rappe, C., & Buser, H. R. (1989), “Chemical properties, analytical methods and environmental levels of PCBs, PCTs, PCNs and PBBs”, Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products, 2, pp.47-89.
    Ballschmiter, K., & Zell, M. (1980), “Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography”, Fresenius' Zeitschrift für analytische Chemie, 302(1), pp.20-31.
    Becker, M., Phillips, T., & Safe, S. (1991), “Polychlorinated diphenyl ethers—A review”, Toxicol. Environ. Chem., 33(3-4), pp.189-200.
    Chu, I., Villeneuve, D. C., Secours, V., & Val1i, V. E. (1990), “Toxicological assessment of chlorinated diphenyl ethers in the rat, Part II”, J. Environ. Sci. Health., Part B, 25(2), pp.225-241.
    Chu, I., Villeneuve, D. C., Secours, V., & Valli, V. E. (1989), “Toxicological assessment of chlorinated diphenyl ethers in the rat”, J. Environ. Sci. Health., Part B, 24(5), pp.493-508.
    Chui, Y. C., Addison, R. F., & Law, F. C. P. (1990), “Acute toxicity and toxicokinetics of chlorinated diphenyl ethers in trout”, Xenobiotica, 20(5), pp.489-499.
    Clarke, M. (2000). Characterization of cold start and upset conditions in municipal waste combustors. Proceedings of the Air & Waste Management Association, Salt Lake City, UT, USA.
    De Boer, J., & Denneman, M. (1998). Polychlorinated diphenylethers: origin, analysis, distribution, and toxicity in the marine environment. In Reviews of environmental contamination and toxicology (pp. 131-144). Springer New York.
    Dickson, L. C., & Karasek, F. W. (1987), “Mechanism of formation of polychlorinated dibenzo-p-dioxins produced on municipal incinerator flyash from reactions of chlorinated phenols”, J. Chromatogr. A, 389(0), pp.127-137.
    Dunnivant, F. M., Coates, J. T., & Elzerman, A. W. (1988), “Experimentally determined Henry's law constants for 17 polychlorobiphenyl congeners”, Environ. Sci. Technol., 22(4), pp.448-453.
    Firestone, D., Ress, J., Brown, N., Barron, R. P., & Damico, J. (1972), “Determination of polychlorodibenzo-p-dioxins and related compounds in commercial chlorophenols”, Journal-Association of Official Analytical Chemists, 55(1), pp.85-92.
    Gass, H. C., LüDER, K., & WILKEN, M. (2002), “PCDD/F-emissions during cold start-up and shut-down of a municipal waste incinerator”, Organohalogen compd., 56, pp.193-196.
    Gass, H. C., Wilken, M., & Lüder, K. (2003), “Optimization of start-up procedures in a municipal waste incinerator-impact on the emissions of dioxins and related compounds”, Organohalogen compd., 63, pp.25-28.
    Howie, L., Dickerson, R., Davis, D., & Safe, S. (1990), “Immunosuppressive and monooxygenase induction activities of polychlorinated diphenyl ether congeners in C57BL6N mice: Quantitative structure-activity relationships”, Toxicol. Appl. Pharmacol., 105(2), pp.254-263.
    Huang, J., Yu, G., Yang, X., & Zhang, Z.-l. (2004), “Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs): potential persistent organic pollutants (POPs) ”, J. Environ. Sci., 16(2), pp.204-207.
    Humppi, T., & Heinola, K. (1985), “Synthesis and gas chromatographic-mass spectroscopic determination of polychlorinated dibenzo-p-dioxins and related compounds in the technical chlorophenol formulation Ky-5”, J. Chromatogr. A, 331(0), pp.410-418.
    Hutzinger, O. (1982). Chlorinated dioxins and related compounds : impact on the environment : proceedings of a workshop held at the Istituto superiore di sanità, Rome, Italy, 22-24 October, 1980 (1st ed.). Oxford Oxfordshire ; New York: Pergamon Press.
    Jensen, S., & Renberg, L. (1972). Contaminants in pentachlorophenol: chlorinated dioxins and predioxins (chlorinated hydroxy--diphenylethers). Ambio.
    Kiceniuk, J. W., & Ray, S. (1994). Analysis of contaminants in edible aquatic resources : general considerations, metals, organometallics, tainting, and organics. New York: VCH.
    Koistinen, J. (1998), “PCDES: Sources and environmental fate”, Toxicol. Environ. Chem., 66(1–4), pp.27-35.
    Koistinen, J. (2000). Polychlorinated Diphenyl Ethers (PCDE). In O. Hutzinger & J. Paasivirta (Eds.), Volume 3 Anthropogenic Compounds Part K (Vol. 3K, pp. 157-201): Springer Berlin Heidelberg.
    Koistinen, J., Paasivirta, J., & Lahtiperä, M. (1993), “Bioaccumulation of dioxins, coplanar PCBs, PCDEs, HxCNs, R-PCNs, R-PCPHs and R-PCBBs in fish from a pulp-mill recipient watercourse”, Chemosphere, 27(1–3), pp.149-156.
    Koistinen, J., Paasivirta, J., Suonpera, M., & Hyvarinen, H. (1995), “Contamination of Pike and Sediment from the Kymijoki River by PCDEs, PCDDs, and PCDFs: Contents and Patterns Compared to Pike and Sediment from the Bothnian Bay and Seals from Lake Saimaa”, Environ. Sci. Technol., 29(10), pp.2541-2547.
    Koistinen, J., Vuorinen, P. J., & Paasivirta, J. (1993), “Contents and origin of polychlorinated diphenyl ethers (PCDE) in salmon from the Baltic Sea, Lake Saimaa and the Tenojoki river in Finland”, Chemosphere, 27(12), pp.2365-2380.
    Kurz, J., & Ballschmiter, K. (1995), “Isomer-specific determination of 79 polychlorinated diphenyl ethers (PCDE) in cod liver oils, chlorophenols and in a fly ash”, Fresenius J. Anal. Chem., 351(1), pp.98-109.
    Kurz, J., & Ballschmiter, K. (1999), “Vapour pressures, aqueous solubilities, Henry's law constants, partition coefficients between gas/water (Kgw), N-octanol/water (Kow) and gas/N-octanol (Kgo) of 106 polychlorinated diphenyl ethers (PCDE)”, Chemosphere, 38(3), pp.573-586.
    Löthgren, C.-J., & van Bavel, B. (2005), “Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility”, Chemosphere, 61(3), pp.405-412.
    Lake, J. L., Rogerson, P. F., & Norwood, C. B. (1981), “A polychlorinated dibenzofuran and related compounds in an estuarine ecosystem”, Environ. Sci. Technol., 15(5), pp.549-553.
    Li, H. W., Wang, L. C., Chen, C. C., Yang, X. Y., Chang-Chien, G. P., & Wu, E. M. Y. (2011), “Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions”, J. hazard. mater., 185(2), pp.1148-1155.
    Lindahl, R., Rappe, C., & Buser, H. R. (1980), “Formation of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) from the pyrolysis of polychlorinated diphenyl ethers”, Chemosphere, 9(5–6), pp.351-361.
    Neuer-Etscheidt, K., Nordsieck, H. O., Liu, Y., Kettrup, A., & Zimmermann, R. (2005), “PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes”, Environ. Sci. Technol., 40(1), pp.342-349.
    Nevalainen, T., Koistinen, J., & Nurmela, P. (1994), “Synthesis, structure verification, and chromatographic relative retention times for polychlorinated diphenyl ethers”, Environ. Sci. Technol., 28(7), pp.1341-1347.
    Nevalainen, T., Kolehmainen, E., Säämänen, M.-L., & Kauppinen, R. (1993), “13C NMR spectroscopic study of diphenyl ether and 28 of its polychlorinated derivatives”, Magn. Reson. Chem., 31(1), pp.100-104.
    Nevalainen, T., & Rissanen, K. (1994), “AM1 and single-crystal X-ray diffraction study of the conformational properties of chlorinated diphenyl ethers”, J. Chem. Soc., Perkin Trans. 2, 2(2), pp.271-279.
    Nilsson, C.-A., & Renberg, L. (1974), “Further studies on impurities in chlorophenols”, J. Chromatogr. A, 89(2), pp.325-333.
    Norström, Å., Andersson, K., & Rappe, C. (1976), “Formation of chlorodibenzofurans by irradiation of chlorinated diphenyl ethers”, Chemosphere, 5(1), pp.21-24.
    Norström, Å., Andersson, K., & Rappe, C. (1977), “Studies on the formation of chlorodibenzofurans by irradiation or pyrolysis of chlorinated diphenyl ethers”, Chemosphere, 6(5), pp.241-248.
    Paasivirta, J., Lahtiperä, M., & Leskijärvi, T. (1982). Experiences of structure analyses of chlorophenol dimers and trimers found in different samples. Chlorinated Dioxins and Related Compounds. Impact on the Environment (pp. 191-200): Pergamon Press Oxford.
    Paasivirta, J., Tarhanen, J., & Soikkeli, J. (1986), “Occurence and fate of polychlorinated aromatic ethers (PCDE, PCA, PCV, PCPA and PCBA) in environment”, Chemosphere, 15(9–12), pp.1429-1433.
    Rappe, C., Nygren, M., & Gustafsson, G. (1982). Occupational exposure to polychlorinated dioxins and dibenzofurans. Paper presented at the ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY.
    Rosiak, K., Li, M.-H., Degitz, S. J., Skalla, D. W., Chu, I., & Francis, B. M. (1997), “Maternal and developmental toxicity of polychlorinated diphenyl ethers (PCDEs) in Swiss-Webster mice and Sprague-Dawley rats”, Toxicology, 121(3), pp.191-204.
    Ruelle, P., & Kesselring, U. W. (1997), “Aqueous solubility prediction of environmentally important chemicals from the mobile order thermodynamics”, Chemosphere, 34(2), pp.275-298.
    Safe, S. (1990), “Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs)”, Crit. Rev. Toxicol., 21(1), pp.51-88.
    Shiu, W. Y., & Mackay, D. (1986), “A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry’s Law Constants, and Octanol–Water Partition Coefficients of the Polychlorinated Biphenyls”, J. Phys. Chem. Ref. Data, 15(2), pp.911-929.
    Stafford, C. J. (1983), “Halogenated diphenyl ethers identified in avian tissues and eggs by GC/MS”, Chemosphere, 12(11–12), pp.1487-1495.
    Tejima, H., Karatsu, Y., Kawashima, M., Sakai, S., & Honda, T. (1993), “Reduction of dioxin emission on start up and shut down at batch-operational MSW incineration plant”, Chemosphere, 27(1–3), pp263-269.
    Tejima, H., Nishigaki, M., Fujita, Y., Matsumoto, A., Takeda, N., & Takaoka, M. (2007), “Characteristics of dioxin emissions at startup and shutdown of MSW incinerators”, Chemosphere, 66(6), pp.1123-1130.
    Villanueva, E. C., Burse, V. W., & Jennings, R. W. (1973), “Chlorodibenzo-p-dioxin contamination of two commercially available pentachlorophenols”, J. Agric. Food. Chem., 21(4), pp.739-740.
    Wang, L. C., Hsi, H. C., Chang, J. E., Yang, X. Y., Chang-Chien, G. P., & Lee, W. S. (2007), “Influence of start-up on PCDD/F emission of incinerators”, Chemosphere, 67(7), pp.1346-1353.
    Wang, M. S., Chen, S. J., Huang, K. L., Lai, Y. C., Chang-Chien, G. P., Tsai, J. H., Lin, W. Y., Chang, K. C., & Lee, J. T. (2010), “Determination of levels of persistent organic pollutants (PCDD/Fs, PBDD/Fs, PBDEs, PCBs, and PBBs) in atmosphere near a municipal solid waste incinerator”, Chemosphere, 80(10), pp.1220-1226.

    無法下載圖示 校內:2020-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE