簡易檢索 / 詳目顯示

研究生: 郭獻隆
Kuo, Hsien-Lung
論文名稱: 多樓層倉儲系統中專用儲位與垂直搬運設備之佈置設計
指導教授: 李賢得
Li, Xian-Dier
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理科學系
Department of Industrial Management Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 84
中文關鍵詞: 倉儲系統多樓層佈置
外文關鍵詞: warehouse system, multi-floor layout
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在探討多樓層倉儲系統中專用式儲位與垂直搬運設備之佈置規劃問題。和一般倉儲系統的儲位佈置問題不同在於,在儲位佈置方面,多樓層倉儲系統必須考慮垂直和水平移動相對的顯著性,因此需要同時考慮水平移動以及垂直移動的成本。在垂直搬運設備規劃方面,研究中考慮了垂直搬運設備的數量與位置對於成本結構的影響,並且同時考量垂直搬運設備的容量限制,雖然使得問題的複雜度提高,但卻更能接近實際倉儲佈置規劃之成本結構的考量。研究的目的是在最小化垂直搬運設備的建構成本以及產品搬運距離的相關總成本,同時決定產品專用儲位的配置、垂直搬運設備的數目與位置以及產品儲位對於每個垂直搬運設備的流量分配。

    本研究首先建構多樓層專用式儲位與垂直搬運設備佈置問題的數學模式,模式中同時考慮到四組決策變數,分別為產品配置到儲位的變數、垂直搬運設備的數目與位置、產品儲位使用各個垂直搬運設備的流量分配變數。由於模式中成本結構的非線性程度相當高,使得目標函式變得相當複雜,因此在研究中針對多樓層倉儲系統的問題結構以及I/O點的相關位置,發展並證明出多個垂直搬運設備最佳位置的特性,並分析出水平與垂直移動成本比例大小的相關特性。

    本研究根據垂直搬運設備最佳位置的特性,發展一個三階段之啟發式演算法,藉以有效率地求得最佳或近似最佳的儲位與垂直搬運設備的佈置。進而以演算實驗來驗證啟發式演算法的成效;在演算實驗中,並分析研究中的相關參數,得知儲位個數與I/O點相關位置對於啟發式演算法的演算效率有顯著的影響。實驗結果發現小樣本的求解效率遠比軟體高約數十倍,而且求解品質不分軒輊;在大樣本問題的求解時,則使用修正後的演算法,其求解效率或品質上均能表現良好,可以用來求解實際問題。

    摘要……………………………………………………………………….. i 圖目錄…………………………………………………………………….. iv 表目錄…………………………………………………………………….. v 第一章 緒論 1 1.1 研究動機……………………………………………………………. 1 1.2 研究目的……………………………………………………………. 2 1.3 研究範圍……………………………………………………………. 2 1.4 研究方法……………………………………………………………. 3 1.5 結果與發現…...……………………………………………………... 3 第二章 文獻回顧 5 2.1 多樓層設施佈置問題…………………………………………….…… 5 2.1.1 漸進式演算法………………………………………………..…... 6 2.1.2 建構式演算法……………………………………………………. 6 2.2 倉儲儲位配置………………………………………………………... 8 2.2.1 儲位配置策略……………………………………………………. 9 2.2.2 倉儲系統I/O點設計……………………………………………... 12 2.2.3 搬運成本模式……………………………………………………. 13 2.3 多樓層倉儲佈置問題…………………………………………………. 14 第三章 多樓層倉儲佈置之模式發展 16 3.1 問題描述…………………………………………………………….. 16 3.2 模式建構…………………………………………………………….. 18 3.3 問題特性之建立………………………………………………….…... 23 3.3.1 垂直搬運設備位置與I/O點位置的相關特性………………………. 23 3.3.2 垂直搬運設備位置與儲位位置的相關特性………………………… 29 3.3.3 移動成本比例與儲位配置的相關特性……………………………... 32 第四章 演算法的發展和實驗 34 4.1 啟發式演算法的發展…………………………………………………. 34 4.2 演算例的說明和參數探討…………………………………………….. 43 4.2.1 演算例的說明……………………………………………………. 43 4.2.2 相關參數分析…………………………………………………… 50 4.3 演算實驗比較、結果分析……………………………………………... 51 4.3.1 小樣本實驗……………………………………………………….. 53 4.3.2 大樣本實驗……………………………………………………….. 57 4.3.3 小結……………………………………………………………… 60 第五章 研究結果與未來研究方向 64 5.1 研究結果………………………………………………………………………... 64 5.2 未來研究方向…………………………………………………………………… 65 參考文獻 66 附錄 附錄1 演算例之LINGO程式…………………………………………………. 69 附錄2 演算例之LINGO程式結果…………………………………………….. 70 附錄3 小樣本C++程式……………………………………………………….. 75 附錄4 大樣本之演算法內圈程序………………………………………………. 83 圖 目 錄 3.1 I/O點在同一邊的倉儲系統透視圖……………………………………… 23 3.2 I/O點在同一邊的倉儲系統側視圖……………………………………… 24 3.3 I/O點分別在側邊的倉儲系統透視圖……………………….…………… 26 3.4 I/O點分別在對邊的倉儲系統透視圖……………………………………. 27 3.5 I/O點分別在縱橫軸直線端點的倉儲系統透視圖………………………… 28 3.6 I/O點在同一點的倉儲系統透視圖………………………………………. 29 3.7 儲位與垂直搬運設備相關位置的透視圖…………………………………. 30 4.1 主演算程序流程圖……………………………………………………… 37 4.2 儲位位置的等分圖……………………………………………………... 38 4.3 改善程序流程圖………………………………………………………... 40 4.4 大規模問題演算法之改善程序流程圖.…………………………………... 42 4.5 演算例之系統佈置圖…………………………………………………… 49 4.6 儲位個數與演算法求解效率之關係圖…………………………………… 61 4.7 儲位個數與演算法求解品質之關係圖…………………………………… 61 表 目 錄 4.1 實驗計畫表……………………………………………………………. 53 4.2 儲位個數N=24的實驗結果……………………………………………. 54 4.3 儲位個數N=36的實驗結果……………………………………………. 54 4.4 儲位個數N=48的實驗結果……………………………………………. 55 4.5 小樣本參數的實驗結果總表…………………………………………… 55 4.6 小樣本的平均誤差值………………………………………………….. 57 4.7 儲位個數N=120的實驗結果…………………………………………... 58 4.8 儲位個數N=240的實驗結果…………………………………………... 58 4.9 儲位個數N=360的實驗結果…………………………………………... 59 4.10 儲位個數N=480的實驗結果…………………………………………... 59 4.11 大樣本參數的實驗結果總表………………………………………….… 60

    中文部分:

    楊欽閔 (1998),“倉儲系統中產品最佳專用儲位之設計-以棧板入庫分箱出庫為運送原則”,國立成功大學工業管理研究所碩士論文。

    西文部分:

    Armour, G.C., and Buffa, E.S. (1963), “A heuristic algorithm and simulation approach to relative location of facilities,” Management Science 9(2), 294-309.

    Ashayeri, J., and Gelders, L.F. (1985), “Warehouse design optimization,” European Journal of Operational Research 21(3), 285-294.

    Azadivar, F. (1986), “Maximization of throughput of a computerized automated warehousing system under system constraints,” International Journal of Production Research 21(3), 551-566.

    Bassan, J., Roll, Y., and Rosenblatt, M.J. (1980), “Internal layout design of a warehouse,” IIE Transactions 12(4), 317-322.

    Bazaraa, M.S., and Kirca, O. (1983), “A branch-and-bound-based heuristic for solving the quadratic assignment problem,” Naval Research Logistics Quarterly 30(3), 287-304.

    Berry, J.R. (1968), “Elements of warehouse layout,” International Journal of Production Research 7(2), 105-121.

    Bozer, Y.A., Meller, R.D., and Erlebacher S.J. (1994), “An improvement-type layout algorithm for single and multiple floor facilities,” Management Science 40(7), 918-932.

    Bozer, Y.A., and White, J.A. (1984), “Travel-time models for automated storage/retrieval systems,” IIE Transactions 16(4), 329-338.

    Cormier, G., and Gunn, E.A. (1992), “A review of warehouse models,” European Journal of Operational Research 58(1), 3-13.
    Davies, A.L., Gabbard, M.C., and Reinholdt, E.F. (1983), “Storage method saves space and labor in open-package-area picking operations,” Industrial Engineering 15(6), 68-74.

    Frazelle, E.H., and Sharp, G.P. (1989), “Correlated assignment strategy can improve order-picking operation,” Industrial Engineering 21(4), 33-37.

    Goetschalckx, M., and Ratliff, H.D. (1990), “Shared storage policies based on the duration stay of unit loads,” Management Science 36(9), 1120-1132.

    Hardy, G.H., Littlewood, J.E., and Polya, G. (1952), Inequalities, Cambridge University Press, 261-262.

    Hausman, W.H., Schwarz, L.B., and Graves, S.C. (1976), “Optimal storage assignment in automatic warehousing systems,” Management Science 22(6), 629-638.

    Heskett, J.L. (1963), “Cube-per-order index–a key to warehouse stock location,” Transportation and Distribution Management 3(4), 27-31.

    Johnson, R.V. (1982), “SPACECRAFT for multi-floor layout planning,” Management Science 28(4), 407-417.

    Kaku, B.K., Thompson, G.L., and Baybars, I. (1988), “A heuristic method for the multi-story layout problem,” European Journal of Operational Research 37(3), 384-397.

    Kim, K.H. (1993), “A joint determination of storage locations and space requirements for correlated items in a miniload automated storage-retrieval system,” International Journal of Production Research 31(11), 2649-2659.

    Liggett, R.S., and Mitchell, W.J. (1981), “Optimal space planning in practice,” Computer Aided Design 13(5), 277-288.

    Linn, R.J., and Wysk, R.A. (1987), “An analysis of control strategies for automated storage and retrieval systems,” INFOR 25(1), 66-83.

    Malette, A.J., and Francis, R.L. (1972), “A generalized assignment approach to optimal facility layout,” IIE Transactions 4(2), 144-147.

    Malmborg, C.J., and Deutsch, S.J. (1988), “A stock location model for dual address order picking systems,” IIE Transactions 20(1), 44-52.
    Meller, R.D., and Bozer, Y.A. (1996), “A new simulated annealing algorithm for the facility layout problem,” International Journal of Production Research 34(6), 1675-1692.

    Meller, R.D., and Bozer, Y.A. (1997), “Alternative approaches to solve the multi-floor facility layout problem,” Journal of Manufacturing Systems 16(3), 192-203.

    Pandit, R., and Palekar, U.S. (1993), “Response time considerations for optmal warehouse layout design,” Journal of Engineering for Industry 115(4), 322-328.

    Randhawa, S.U., and Shroff, R. (1995), “Simulation-based design evaluation of unit load automated storage and retrieval systems,” Computers and Industrial Engineering 28(1), 71-79.

    Ratliff, H.D., and Rosenthal, A.S. (1983), “Order picking in a rectangular, warehouse a solvable case of the traveling salesman problem,” Operations Research 31(3), 507-521.

    Rosenblatt, M.J., and Eynan, A. (1989), “Deriving the optimal boundaries for class-based automatic storage/retrieval systems,” Management Science 35(12), 1519-1524.

    Rosenblatt, M.J., and Roll, Y. (1984), “Warehouse design with storage policy considerations,” International Journal of Production Research 22(5), 809-821.

    Rosenwein, M.B. (1994), “An application of cluster analysis to the problem of locating items within a warehouse,” IIE Transactions 26(1), 101-103.

    Rouwenhorst, B., Reuter, B., Stockrahm, V., Houtum, G.J., Mantel, R.J., and Zijm, W.H.M. (2000), “Warehouse design and control: Framework and literature review,” European Journal of Operational Research 122(3), 515-533.

    Sahni, S., and Gonzalez, T. (1976), “P-complete approximation problem,” Journal of Association for Computing Machinery 23(3), 555-565.

    Wilson, H.G. (1977), “Order quantity, product popularity, and the location of stock in a warehouse,” IIE Transactions 9(3), 230-237.

    Zhang, G.Q., Xue, J., and Lai, K.K. (2002), “A class of genetic algorithms for multiple-level warehouse layout problems,” International Journal of Production Research 40(3), 731-744.

    下載圖示 校內:立即公開
    校外:2003-06-26公開
    QR CODE