| 研究生: |
黃品森 Huang, Pin-Sang |
|---|---|
| 論文名稱: |
成長於矽基材之一維奈米結構電阻效應對場發射特性影響:使用古典傳輸模型模擬研究 Resistance effect on Field Emission for One-dimensional Nanostructures Grown on Silicon Substrates:A Simulation Study Using Classical Transport Model |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 成長於 、矽基材 、一維 、米結構 、電阻效應 、對場發射特性影響 、使用古典傳輸模型模擬研究 |
| 外文關鍵詞: | A Simulation Study, Using Classical Transport Model, Resistance effect on Field Emission, for One-dimensional Nanostructures, Grown on Silicon Substrates |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管(Carbon Nanotubes,CNTs)的Fowler-Nordheim(F-N)圖形在高電壓區域常顯示出類似飽和(saturation-like)的現象。此現象歸因於CNTs的電阻效應以及在基板與CNTs之間的界面效應。Jo et al.建立了一道考慮電阻效應的F-N修正方程式,而且他們的模型能藉由調整CNTs的本體(bulk)電阻來擬合實驗數據[52]。本研究使用古典載子傳輸模型來探討成長在矽基材上的一維奈米結構的電阻效應。古典傳輸方程式被用來描述在材料裡的載子傳輸,並且用波松方程式(Poisson equation)來解電位分佈。在發射端與真空界面的場發射用F-N方程式來模擬。本論文的模擬結果顯示出由模擬所得到的F-N圖形也能符合Jo的F-N修正方程式。更重要的是,由一維奈米結構之F-N圖形所得到的電阻值非常接近計算值,此計算值是由模擬中所使用的材料遷移率得到的。再者,界面效應也可視為一個與CNTs的本體電阻作串聯的大電阻器。此外,載子的溫度效應對一維奈米結構中的載子遷移率和電阻的影響亦可由此電阻效應得到解釋。
The Fowler-Nordheim (F-N) plots of the carbon nanotubes (CNTs) often exhibit a saturation-like phenomenon in the high-voltage region. This phenomenon is attributable to the resistance effect of the CNTs and/ or the interface effect between the substrate and CNTs. Jo et al. established a modified F-N equation to take the resistance effect into account. And their model can fit the experiment data well by adjusting the bulk resistance of the CNTs [52]. In this study, the carrier transport model is applied to investigate the resistance effect of the 1-D nanostructure grown on silicon substrate. The classical transport equation is used to describe the carrier transport in the material and solved together with the Poisson,s equation. The field emission at the emitter-vacuum interface is modeled by the F-N equation. My thesis simulation results exhibit that the F-N plots obtained from the simulation can also be fitted well by Jo,s modified F-N equation. And more importantly, the fitted resistance of the 1-D nanostructure is very close to the calculated resistance from the material mobility used in the simulation. Furthermore, the interface effect can also be considered as a large resistor which is in series with the bulk resistance of the 1-D nanostructure. The effect of carrier,s temperature on carrier,s mobility and resistance in the 1-D nanostructure is also examined.
[1] 財團法人工業技術研究院, http://www.itri.org.tw/index.jsp
[2] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl. Phys. Lett. 76, 3813 (2000).
[3] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
[4] N. Liu, Z. Ma, and X. Chu, J. Vac. Sci. Technol. B 12, 1712 (1994).
[5] A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771 (1996).
[6] E. S. Kohn, Appl. Phys. Lett. 41, 76 (1970).
[7] R. J. Harvery, R. A. Lee, and A. J. Miller, IEEE Trans. Electron Devices. 38, 2323 (1991).
[8] N.Liu, Z. Ma, and X.Chu, J. Vac Sci. Technol. B. 12, 1712 (1994).
[9] A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771 (1996).
[10] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl. Phys. Lett. 76, 3813 (2000).
[11] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, Appl. Phys. Lett. 70, 3308 (1997).
[12] W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
[13] Y. Satio, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, Appl. Phys. A 67, 95 (1998).
[14] J. M. Bonard, J. P. Salvetat, T. Stockli, Walt A. de Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett. 73, 918 (1998).
[15] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H.Dai, Science 283, 512 (1999).
[16] S. Uemura , J. Yotani , T. Nagasako , H. Kurachi , H. Yamada , T. Ezaki , T.
Maesoba , T. Nakao , Y. Saito , and M. Yumura , IDMC , 75 (2003).
[17] 科學發展期刊,2004年10月 382期.
[18] R. K. Fowler and L. W. Nordheim, Proc. Roy. Soc. (London), A 119, 173 (1928).
[19] L. Nordheim, Proc. Roy. Soc. (London), A 121, 626 (1928).
[20] E. W. Müller, Ergeb. Exakt. Naturwiss 27, 290 (1953).
[21] R. H. Good and E. W. Müller, Handbuch der physik 21, 178 (1956).
[22] W. P. Dyke and W. W. Dolan, Advances in Electronics and Electron Physics, Vol. 8, Academic Press: New York, p. 89, 1956.
[23] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, IEEE Trans. Electron Devices ED-36, 225 (1989).
[24] E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).
[25] P. H. Cutler and D. Nagy, Surf. Sci. 3, 71 (1964).
[26] H. Q. Nguyen, P. H. Cutler, T. E. Feuchtwang, N. Miskovsky, and A. A. Lucas, Surf. Sci. 160, 331 (1985).
[27] A. Mayer and J. P. Vigneron, J. Phys. Condens. Matter 10, 896 (1998).
[28] J. He, P. H. Cutler, N. M. Miskovsky, T. E. Feuchtwang, T. E. Sullivan, and M. Chung, Surf. Sci. 241, 348 (1991).
[29] P. H. Cutler, J. He, J. Miller, N. M. Miskovsky, B. Weiss, and T. E. Sullivan, Prog. Surf. Sci. 42, 169 (1993).
[30] R. G. Forbes, J. Vac. Sci. Technol. B 17, 526 (1999).
[31] R. G. Forbes, J. Vac. Sci. Technol. B 17, 534 (1999).
[32] S. G. Christov, Phys. Stat. Sol. 17, 11 (1966).
[33] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys. 45, 487 (1973).
[34] R. Stratton, Phys. Rev. 135, A794 (1964).
[35] G. N. Fursey, Appl. Surf. Sci. 94, 44 (1996).
[36] R. Gomer, Field Emission and Field Ionization, American Institute of Physics: New York, 1993. American Vacuum Society Classics.
[37] A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy, Plenum: New York, 1984.
[38] R. F. Greene and H. F. Gray, p-n junction controlled field emitter array
cathodes, US Patent 4513308 (1985).
[39] Wei Zhu, “Vacuum Microelectronics”, by John Wiley & Sons, Inc (2001).
[40] T. Hirano, S. Kanemaru, H. Tanoue, and J. Itoh, Jpn. J. Appl. Phys. 34, 6907 (1995).
[41] T. Matsukawa, S. Kanemaru, K. Tokunaga, and J. Itoh, J. Vac. Sci. Technol. B, Vol. 18, 1111 (2000).
[42] C. S. Chang, S. Chattopadhyay, L. C. Chen, K. H. Chen, C. W. Chen,
Y. F. Chen, R. Collazo and Z. Sitar, PHYSICAL REVIEW B 68, 125322 (2003)
[43] T. K. Ku, M. S. Chen, C. C. Wang, M. S. Feng, L. J. Hsieh, C. M. Huang, and H. C. Cheng, Jpn. J. Appl. 35, 5789 (1995).
[44] A. Modinos, Plenum Press, New York (1938).
[45] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, “A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices”, IEEE Transactions on CAD, Vol. 7, no. 11, pp. 1164–1171, 1988.
[46] G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in Arsenic-, Phosphorus- and Boron-doped Silicon”, IEEE Transactions on Electron Devices, Vol. ED-30, pp. 764–769, 1983.
[47] C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and hole drift
velocity measurements in Silicon and their empirical relation to electric field and temperature,” IEEE Transactions on ElectronDevices, Vol. ED-22, pp. 1045–1047, 1975.
[48] J. W. Slotboom and H. C. de Graaff, “Measurements of Bandgap Narrowing in Si Bipolar Transistors” , Solid-State Electronics, Vol. 19, pp. 857–862, 1976.
[49] J. W. Slotboom and H. C. de Graaff, “Bandgap Narrowing in Silicon Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. ED-24, no. 8, pp. 1123–1125, 1977.
[50] J. W. Slotboom, “The pn-Product in Silicon”, Solid-State Electronics, Vol. 20, pp. 279–283, 1977.
[51] D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- andp-type Silicon,” Solid-State Electronics, Vol. 35, no. 2, pp. 125–129, 1992.
[52] S. H. Jo, S. I. Jung and C. J. Lee, Technical Digest of 19th Internal Vacuum
Nanoelectronics Conference (IVNC2006), p. 315 (2006).
[53] M. Sveningsson, M. Jönsson, O. A. Nerushev, F. Rohmund, and E. E. B.
Campbell, Appl. Phys. Lett., 81, 1095, 2002.
[54] K. A. Dean and B. R. Chalamala, Appl. Phys. Lett., 76, 375, 2000.
[55] S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett., 88,
105502, 2002.
[56] P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, Appl. Phys. Lett., 82, 1763,
2003.