簡易檢索 / 詳目顯示

研究生: 趙真
Chao, Chen
論文名稱: 船艦不同機庫構型之甲板風場模擬
Computational Fluid Dynamics Simulation of Flow Field over the Flight Deck with Different Types of Hangar
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 147
中文關鍵詞: 計算流體力學護衛艦甲板風場船舶風場跡流
外文關鍵詞: CFD, Frigate, Ship airwake, Flow field of flight deck
相關次數: 點閱:112下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   當對於具有直昇機起降需求的船艦,除了會因海上環境會影響直昇機起降時的安全性,流經此船艦在後方甲板所產生的風場如U型渦流結構等現象,也會對直昇機起降造成影響,而本研究則針對鄰近甲板的機庫構型做變化透過CFD數值模擬方法,並採用RANS中的Realizable k-ε紊流模型進行計算,量測在不同入流角下以SFS為基本構型,依現代軍艦為參考設計出Incline型、Corner型以及Chamfer型,分別量測四種機庫構型所造成的甲板流場分佈狀況、流速、渦度、紊流強度等物理特徵,並與Yang(2020)之部份實驗結果進行對照比較,該實驗透過PIV方法於迴流水槽中進行實驗,量測和本研究相同的四種機庫模型產生的流場結構等特徵,且將各種機庫在不同迎風角下對上述的量測項目進行綜合比較評估,發現當迎風角大於一臨界角度時(如本研究中的Green 30°和Green 45°兩條件),四種機庫構型的各項物理量皆有趨於一致的現象,且四種機庫在後方甲板上形成的U型渦流結構後流場皆有往上抬升的現象,以及在後段近甲板面皆有複雜渦漩分佈,該渦漩上方皆出現較強的紊流帶,直升機於甲板起降時應避免降落在此位置。綜合所有現象之結果,其中又以Corner型機庫因其大範圍的矩型缺角設計所呈現出來的各項表現明顯亦於其他三種機庫。統整本研究結果如流場的速度大小和流向方向分佈,即可在制定風限圖所需的風向條件的部份做為初步了解後可供直升機駕駛員在遭遇相似環境條件下時可對周圍流場有一個初步應變判斷,以及船艦機庫設計上能有一個參考依據。

      When helicopter pilots take off and land on the flight deck, the safety during the operation might be affceted by the flow field above the flight deck, such as the vortex structure cause by the wind passing through the hangar. In this research, we use the Computational Fluid Dynamics (CFD) in order to simulate the flow field above the flight on the Simple Frigate Shape (SFS) Model with different types of hangar (Base, Incline, Corner, Chamfer) under fourinflow conditions (Headwind, Green 10°, Green 30°, Green 45°). We also compare with other expermint data which use Particle Image Velocimetry (PIV) method in circulating water tank. Simulation items include flow speed, 2D, 3D streamlines, vorticity and turbulencr intensity, summarize the characteristic of flow structure, taking these conclusions as a basic knowledge which can provide such as the informations needed to establish the Ship-Helicopter Operating Limits (SHOL), give pilots a preliminary understanding of the flow field above the flight deck under different condition or even give some concept of the flight deck flow field to the designer when he allocation and design the structure of the hangar in the future.

    摘要 I Extend Abstract II 致謝 IX 目錄 X 圖目錄 XII 表目錄 XX 縮寫目錄 XXI 符號目錄 XXII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 5 1-3 本文架構 6 第二章 文獻回顧 7 2-1 流場模型 7 2-2 機庫模型 10 2-3 機庫模型風場CFD與實驗研究 15 2-4 直升機起降與飛行甲板之流場交互作用 25 第三章 數值方法 30 3-1 數值方法 30 3-2 統御方程式 32 3-2-1 連續方程式 32 3-2-2 動量方程式 32 3-3 紊流模型 33 3-4 物理模型建立 36 3-5 邊界條件 40 3-6 網格劃分 43 第四章 結果與討論 45 4-1 網格獨立性分析 45 4-2 流場和渦度分布比較 49 4-2-1 Base型機庫 50 4-2-2 Incline型機庫 61 4-2-3 Corner型機庫 73 4-2-4 Chamfer型機庫 84 4-2-5 不同條件下之兩平面中線二維速度和渦度結果比較 95 4-2-6 綜合小結 128 4-3 不同構型機庫之紊流強度分佈 131 4-3-1 Headwind 132 4-3-2 Green 10° 134 4-3-3 Green 30° 136 4-3-4 Green 45° 138 4-3-5 綜合小結 140 第五章 結論與未來展望 141 5-1 綜合結論 141 5-1-1 實驗與CFD模擬結果討論 141 5-1-2 CFD模擬結果 142 5-2 未來展望 144 參考文獻 145

    Crozon, C. (2015). Coupling flight mechanics and CFD: numerical simulation of shipborne rotors. Doctoral dissertation, University of Liverpool
    Driver, D. M., Seegmiller, H. L., & Marvin, J. G. (1987). Time-dependent behavior of a reattaching shear layer. AIAA journal, 25(7), 914-919.
    Forrest, J., Kaaria, C., & Owen, I. (2016). Evaluating ship superstructure aerodynamics for maritime helicopter operations through CFD and flight simulation. The Aeronautical Journal, 120(1232), 1578-1603.
    Forrest, J. S., & Owen, I. (2010). An investigation of ship airwakes using Detached-Eddy Simulation. Computers & fluids, 39(4), 656-673.
    Greenwell, D., & Barret, R. (2006). Control of Ship Air Wakes using inclined screens. National Aerospace Laboratory NLR - 32nd European Rotorcraft Forum, ERF 2006.
    Herry, B. (2010). Aerodynamic study of a 3D backward facing double step applied to safer launch and recovery of helicopters on ships. Doctoral Thesis, Université de Valenciennes et du Hainaut Cambrésis, France.
    Hoencamp, A., Pavel, M., & Stapersma, D. (2013). The key facts of ship helicopter operational limitation development.
    Johns, Michael K. (1988). Flow visualization of the airwake around a model of a DD-963 class destroyer in a simulated atmospheric boundary layer. Calhoun: The NPS Institutional Archive, institutional archive of the naval postgraduate school, Monterey, USA, http://hdl.handle.net/10945/23240
    Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. In Numerical prediction of flow, heat transfer, turbulence and combustion (pp. 96-116): Elsevier.
    Lee, R. G., & Zan, S. J. (2004). Unsteady aerodynamic loading on a helicopter fuselage in a ship airwake. Journal of the American Helicopter Society, 49(2), 149-159.
    Mora, R. B. (2014). Experimental investigation of the flow on a simple frigate shape (SFS). The Scientific World Journal, 2014.
    Moat, B., Yelland, M., & Molland, A. (2005). The effect of ship shape and anemometer location on wind speed measurements obtained from ships. School of Engineering Sciences, Ship Science, University of Southampton, UK
    Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, 4(1), 625-632.
    Orbay, E., & Sezer-Uzol, N. (2016). Computational fluid dynamics simulations of ship airwake with a hovering helicopter rotor. Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016, ICCFD9-281.
    Platt, J. R. (1998). Wind detection in a microcosm: ship/aircraft environment sensors. IEEE aerospace and electronic systems magazine, 13(2), 26-33.
    Polsky, S. (2002). A computational study of unsteady ship airwake. Paper presented at the 40th AIAA Aerospace Sciences Meeting & Exhibit.
    Rao, A. N., Minelli, G., Zhang, J., Basara, B., & Krajnovic, S. (2018). Investigation of the near-wake flow topology of a simplified heavy vehicle using PANS simulations. Journal of Wind Engineering and Industrial Aerodynamics, 183, 243-272.
    Reddy, K., Toffoletto, R., & Jones, K. (2000). Numerical simulation of ship airwake. Computers & fluids, 29(4), 451-465.
    Shafer, D., & Ghee, T. (2005). Active and passive flow control over the flight deck of small naval vessels. Paper presented at the 35th AIAA Fluid dynamics conference and exhibit.
    Shukla, S., Sinha, S., & Singh, S. (2019). Ship-helo coupled airwake aerodynamics: A comprehensive review. Progress in Aerospace Sciences, 106, 71-107.
    Sousa, J. (2002). Turbulent flow around a surface-mounted obstacle using 2D-3C DPIV. Experiments in Fluids, 33(6), 854-862.
    Syms, G. (2004). Numerical simulation of frigate airwakes. International Journal of Computational Fluid Dynamics, 18(2), 199-207.
    Syms, G. (2008). Simulation of simplified-frigate airwakes using a lattice-Boltzmann method. Journal of Wind Engineering and Industrial Aerodynamics, 96(6-7), 1197-1206.
    Spalart, P., & Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. Paper presented at the 30th aerospace sciences meeting and exhibit.
    Sezer-Uzol, N., Sharma, A., & Long, L. N. (2005). Computational fluid dynamics simulations of ship airwake. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 219(5), 369-392.
    Tai, T. C. (2001). Airwake simulation of modified TTCP/SFS ship. Naval Surface Warfare Center, Carderock Division Code 5300 West Bethesda, MD 20817-5700, USA.
    Tinney, C., & Ukeiley, L. (2009). A study of a 3-D double backward-facing step. Experiments in Fluids, 47(3), 427-438.
    Wilkinson, C., Zan, S., Gilbert, N., & Funk, J. (1998). Modelling and simulation of ship air wakes for helicopter operations-a collaborative venture. Paper presented at the RTO AVT Symposium.
    Yuan, W., Wall, A., & Lee, R. (2018). Combined numerical and experimental simulations of unsteady ship airwakes. Computers & fluids, 172, 29-53.
    Yang. Y. J. (2020). The Influence of Frigate Hangar Geometries to The Flow Structures of Helicopter Flight Deck. Master Degree, Systems and Naval Mechatronic Engineering, NCKU. DOI:10.6844/NCKU202000871
    Zan, S. (2005). On aerodynamic modelling and simulation of the dynamic interface. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 219(5), 393-410.
    Zan, S. J.; Syms, G. F.; & Cheney, B. T. (1998). Analysis of patrol frigate air wakes. Aerodynamics Laboratory Institute for Aerospace Research National Research Council Canada Ottawa, Canada KIA OR6,
    http://resolver.tudelft.nl/uuid:76b9ec45-4583-4e5c-840e-a088ff4915d
    Zhang, F., Xu, H., & Ball, N. (2009). Numerical simulation of unsteady flow over SFS 2 ship model. Paper presented at the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition.
    王金玲, & 郜冶. (2016). 艦船尾部结構對直升機操作區流場的影響. 哈爾濱工業大學學報, 48(10), 148-154.
    陆伟. (2014). 艦尾飛行甲板流場特性及流動控制研究. Master's thesis, 南京航空航天大學.
    胡楚君, 安强林, & 王晓成. (2019). 艦载直升機艦風限圖計算. 科技導報, 37(13), 70-75.
    曹翔皓. (2019). 潛體阻力之三維數值模擬與紊流流場特性之分析. 成功大學系統及船舶機電工程學系碩士論文, 1-93.
    林信宏, 呂俊億, 吳聖儒, 劉宗龍. (2019). NACA2415 旋翼於不同轉速下的升力變化與分析-以 S-70C 艦載直升機為例. 國防大學第28 屆國防科技學術研討會議事手冊, 53.

    下載圖示 校內:2021-07-23公開
    校外:2021-07-23公開
    QR CODE