簡易檢索 / 詳目顯示

研究生: 沈世家
Shen, Shih-Jia
論文名稱: 精確量測均質與非均質黏彈性薄膜在微奈米尺度下之力學性質
Accurate micro and nano scale measurements of mechanical properties for homogeneous and heterogeneous viscoelastic thin films
指導教授: 劉浩志
Liu, Bernard Haochih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: 原子力顯微鏡的奈米壓痕測試奈米壓痕試驗機彈性模數黏彈性材料
外文關鍵詞: AFM nanoindentation, Elastic modulus, Nanoindenter, viscoelastic materials
相關次數: 點閱:156下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了量測微奈米尺度的力學性質,現已廣泛應用奈米壓痕試驗機 ( Nanoindenter ) 以及原子力顯微鏡的奈米壓痕測試( AFM nanoindentation )來做奈米壓痕測試,而奈米壓痕測試也已經廣泛地應用在生物材料以及微生物等黏彈性試片的力學分析。然而在黏彈性材料的量測上,其黏彈性性質會使材料的應變須考慮時間因子,並且本實驗室在之前的研究發現,必須由量測到的Force-Distance curve的power law關係來選用接觸理論計算,若是不考慮power law關係,計算得到的楊氏模數值會隨著壓縮深度增加而呈指數下降,這並不符合楊氏模數是一固定值的材料本質特性[1]。
    本實驗分別應用AFM以及Nanoindenter來對PMMA、PVA及PDMS三種黏彈性薄膜進行奈米壓痕量測分析。在AFM nanoindentation,我們以PeakForce QNM以及Force Volume兩種不同壓縮速率的力學測量模式來量測,分別為800 nm/s以及40 nm/s。由PMMA及PVA薄膜的實驗發現對於黏彈性材料而言,由於其應變並不是立即完全反應,而是需要一段時間來完全應變,因此以Force Volume mode來量測黏彈性材料比較精準,其壓縮速率使黏彈性薄膜有時間應變,並且使薄膜表面可以與探針貼合接觸,而得到真正探針在隨著壓縮深度改變該有的接觸面積,並且可以得到與文獻較符合的楊氏模數值,分別為PMMA = 4.50 GPa以及PVA為1.78 GPa。而PDMS的試驗,其Force–Distance Curve之power law在這兩種模式皆呈現1次方關係,因此在這兩種壓縮速度下皆無法使PDMS有時間完全應變。在此使用modified flat punch model來修正球型針的接觸半徑[1],可以得到合理的楊氏模數。並可得到不同混和比例的PDMS之楊氏模數強弱差別,PDMS 5:1為11.90 MPa、PDMS 10:1為14.91MPa以及PDMS 15:1為6.20 MPa。
    進一步,我們將Force Volume mode與Nanoindenter量測結果比較,在PMMA及PVA的部分,Force Volume mode以Sneddon model計算得到的楊氏模數值會小於Nanoindenter以Oliver & Pharr method計算的的楊氏模數值。我們發現這是因為PMMA及PVA薄膜在Force Volume mode也有塑性變形發生,因此需以Oliver & Pharr method計算楊氏模數會更精確得到PMMA = 5.50 GPa以及PVA = 3.07 GPa。
    在不同比例的PDMS薄膜,其Force-Distance curve之power law由 Nanoindenter量測到的與AFM naonindentation量測的一樣呈現1次方關係,我們試用modified flat punch model計算Nanoindener量測的楊氏模數,分別為PDMS 5:1 = 106.61 MPa、PDMS 10:1 = 118.08 MPa以及PDMS 15:1 = 72.58 MPa,其趨勢雖然與AFM nanoindentaion相同,但數值卻大許多。因此我們再以compression test量測PDMS的楊氏模數,分別為PDMS 5:1 = 2.80 MPa、PDMS 10:1 = 3.13 MPa以及PDMS 15:1 = 1.35 MPa,其與AFM nanoindentation之結果是接近的,由此可知modified flat punch model適合修正AFM探針與PDMS薄膜之接觸半徑,然而對Nanoindenter的Berkovich探針的修正仍有限。
    在非均質黏彈性薄膜,分別有PMMA / PDMS以及PDMS / PMMA兩種雙層膜。以Force Volume mode量測,原本的均質PMMA薄膜之power law為2次方關係。PMMA / PDMS雙層膜則是得到power law為1.5的Force–Distance curve,然而以Nanoindenter所量測的Force – Distance curve,其power law降低到了1次方。在PDMS / PMMA雙層膜部分,由Force – Distance curve來看,原本的均質材料PDMS其power law為1。而雙層膜材料PDMS / PMMA,以AFM nanoindentation以及Nanoindenter量測得到的power law也都仍為1次方。
    因此我們推測PDMS對於兩種雙層膜的影響大於PMMA薄膜,所以在PMMA / PDMS雙層膜,隨著壓縮深度越深,底層PDMS的黏彈性性質影響越來越大,造成Force-Distance curve之power law由2次方降到1.5次方再降到1次方。而在PDMS / PMMA雙層膜,其壓縮深度由100 nm至2000 nm量測到的Force-Distance curve之power law則皆是1次方的關係。

    In order to accurately measure the micro-nano mechanical properties of viscoelastic materials, we used two different modes that are PeakForce QNM and Force Volume for AFM nanoindentation and Nanoindenter to measure the modulus of PMMA, PVA and PDMS thin films. For PMMA and PVA thin films, compared to PeakForce QNM mode, we can get correct power law of Force-Distance curves which are consistent with tip geometry shape by Force Volume mode with slow indent rate. Since viscoelastic materials have enough time to do full deformation, the tip can contact the surface of sample completely. Otherwise, the Force-Distance curve display plastic deformation, so we use Oliver-Pharr method to calculate Elastic modulus that value is closed to measeured by Nanoindenter. And we calculate the modulus of PDMS thin film by modified flat-punch model since the power law of Force-Distance curve is 1 for both modes in AFM nanoindentation. For Nanoindenter, we suggested to use flat-punch probe to do the test.

    一、 序論 1 1-1前言 1 1-2研究動機與目的 2 二、 文獻回顧 3 2-1黏彈性材料 3 2-1-1聚二甲基矽氧烷 4 2-1-2聚甲基丙烯酸甲酯 6 2-1-3 聚乙烯醇 7 2-2 原子力顯微鏡掃描技術基本原理及介紹 9 2-2-1原子力顯微鏡掃描技術 9 2-2-2 原子力顯微鏡奈米壓痕試驗 12 2-3 奈米壓痕試驗 15 2-4接觸機制理論 16 Flat punch model: 22 Oliver and Pharr method 25 Johnson-Kendall-Roberts model(JKR model) 27 Derjaguin-Muller-Toporov model(DMT model) 28 Tabor parameter 28 Maugis model 29 三、 實驗方法與與實驗架構 30 3-1實驗架構 30 3-2實驗方法 31 3-2-1材料製備 31 3-2-2 Nanoindentation量測 32 3-3實驗儀器與藥品 35 四、 結果與討論 37 4-1均質黏彈性薄膜之成分與膜厚分析 37 4-2 探針的校正 43 4-2-1 AFM探針 43 4-2-2 Nanoindenter探針 49 4-3 黏彈性薄膜之機械性質分析 50 4-3-1 PMMA薄膜 50 4-3-2 PVA薄膜 61 4-3-3 PDMS 77 4-3-4 非均質黏彈性薄膜 89 4-3-5 PeakForce QNM及Force Volume mode對黏彈性材料之綜合討論 99 4-3-6 Force Volume mode及Nanoindenter對黏彈性材料之綜合討論 100 五、 結論與未來展望 101 六、 參考文獻 104

    [1] A. C. Chang and B. H. Liu, "Modified flat-punch model for hyperelastic polymeric and biological materials in nanoindentation," Mechanics of Materials, 2017.
    [2] S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, "Nanomechanical analysis of cells from cancer patients," Nature nanotechnology, vol. 2, no. 12, pp. 780-783, 2007.
    [3] Y. Deng, M. Sun, and J. W. Shaevitz, "Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells," Physical Review Letters, vol. 107, no. 15, p. 158101, 2011.
    [4] D. Hoffman, I. Miskioglu, K. E. Aifantis, and J. Drelich, "Measuring the surface and bulk modulus of polished polymers with AFM and nanoindentation," Journal of Adhesion Science and Technology, vol. 26, no. 8-9, pp. 1201-1220, 2012.
    [5] Q. Yang, W. Li, Z. Liu, and L. Su, "Nanoindentation experiment and modeling for biomechanical behavior of red blood cell," in Mechatronics and Automation (ICMA), 2011 International Conference on, 2011, pp. 227-231: IEEE.
    [6] A. Jäger, K. Hofstetter, C. Buksnowitz, W. Gindl-Altmutter, and J. Konnerth, "Identification of stiffness tensor components of wood cell walls by means of nanoindentation," Composites Part A: Applied Science and Manufacturing, vol. 42, no. 12, pp. 2101-2109, 2011.
    [7] M. Lekka, "Discrimination between normal and cancerous cells using AFM," Bionanoscience, vol. 6, no. 1, pp. 65-80, 2016.
    [8] M. Lekka et al., "Cancer cell detection in tissue sections using AFM," Archives of biochemistry and biophysics, vol. 518, no. 2, pp. 151-156, 2012.
    [9] A. Cerf, J.-C. Cau, C. Vieu, and E. Dague, "Nanomechanical properties of dead or alive single-patterned bacteria," Langmuir, vol. 25, no. 10, pp. 5731-5736, 2009.
    [10] H. H. Tuson et al., "Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity," Molecular microbiology, vol. 84, no. 5, pp. 874-891, 2012.
    [11] J. Notbohm, B. Poon, and G. Ravichandran, "Analysis of nanoindentation of soft materials with an atomic force microscope," Journal of materials research, vol. 27, no. 1, pp. 229-237, 2012.
    [12] D. M. Ebenstein, "Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water," Journal of Materials Research, vol. 26, no. 8, pp. 1026-1035, 2011.
    [13] A.-Y. Jee and M. Lee, "Comparative analysis on the nanoindentation of polymers using atomic force microscopy," Polymer Testing, vol. 29, no. 1, pp. 95-99, 2010.
    [14] Z. Wang, A. A. Volinsky, and N. D. Gallant, "Nanoindentation study of polydimethylsiloxane elastic modulus using B erkovich and flat punch tips," Journal of Applied Polymer Science, vol. 132, no. 5, 2015.
    [15] D. M. Ebenstein and K. J. Wahl, "A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves," Journal of colloid and interface science, vol. 298, no. 2, pp. 652-662, 2006.
    [16] N. Fujisawa and M. V. Swain, "Effect of unloading strain rate on the elastic modulus of a viscoelastic solid determined by nanoindentation," Journal of materials research, vol. 21, no. 3, pp. 708-714, 2006.
    [17] A. Strojny, X. Xia, A. Tsou, and W. W. Gerberich, "Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties," Journal of adhesion science and technology, vol. 12, no. 12, pp. 1299-1321, 1998.
    [18] T. Jin, Z. Zhou, Z. Liu, G. Xiao, G. Yuan, and X. Shu, "Sensitivity of PMMA nanoindentation measurements to strain rate," Journal of Applied Polymer Science, vol. 132, no. 17, 2015.
    [19] T. Young, M. Monclus, T. Burnett, W. Broughton, S. Ogin, and P. Smith, "The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers," Measurement Science and Technology, vol. 22, no. 12, p. 125703, 2011.
    [20] C. DeMerlis and D. Schoneker, "Review of the oral toxicity of polyvinyl alcohol (PVA)," Food and Chemical Toxicology, vol. 41, no. 3, pp. 319-326, 2003.
    [21] D. C. Lin, D. I. Shreiber, E. K. Dimitriadis, and F. Horkay, "Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models," Biomechanics and modeling in mechanobiology, vol. 8, no. 5, p. 345, 2009.
    [22] D. Lin, E. Dimitriadis, and F. Horkay, "Elasticity of rubber-like materials measured by AFM nanoindentation," Express Polym Lett, vol. 1, no. 9, pp. 576-584, 2007.
    [23] J. Němeček, "Nanoindentation applied to materials with an inner structure," in Key Engineering Materials, 2014, vol. 586, pp. 55-58: Trans Tech Publ.
    [24] A. Pakzad, J. Simonsen, and R. Yassar, "Elastic properties of thin poly (vinyl alcohol)–cellulose nanocrystal membranes," Nanotechnology, vol. 23, no. 8, p. 085706, 2012.
    [25] J. Lee and Y. Deng, "Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber," Polymer bulletin, vol. 70, no. 4, pp. 1205-1219, 2013.
    [26] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
    [27] G. Meyer and N. M. Amer, "Novel optical approach to atomic force microscopy," Applied physics letters, vol. 53, no. 12, pp. 1045-1047, 1988.
    [28] 黃英碩, "掃描探針顯微術的原理及應用," 科儀新知, no. 144, pp. 7-17, 2005.
    [29] P. M. Schön, M. Gosa, and G. J. Vancso, "Imaging of Mechanical Properties of Soft Matter. From Heterogeneous Polymer Surfaces to Single Biomolecules," Imaging & microscopy, vol. 15, pp. 43-46, 2013.
    [30] G. Smolyakov et al., "Biophysical properties of cardiomyocyte surface explored by multiparametric AFM," Journal of structural biology, vol. 198, no. 1, pp. 28-37, 2017.
    [31] S. R. Cohen and E. Kalfon-Cohen, "Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review," Beilstein journal of nanotechnology, vol. 4, p. 815, 2013.
    [32] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of materials research, vol. 7, no. 6, pp. 1564-1583, 1992.
    [33] K. L. Johnson and K. L. Johnson, Contact mechanics. Cambridge university press, 1987.
    [34] H. Hertz, "On the contact of elastic solids," J. Reine Angew Math., vol. 92, pp. 156-171, 1881.
    [35] 鄭俊科, "具橫向等向性鍍層之彈液動潤滑分析," 成功大學材料科學及工程學系學位論文, pp. 1-117, 2013.
    [36] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," International journal of engineering science, vol. 3, no. 1, pp. 47-57, 1965.
    [37] 張瑞慶, "奈米壓痕技術與應用," ed: 力學學會會訊, 2006.
    [38] K. Johnson, K. Kendall, and A. Roberts, "Surface energy and the contact of elastic solids," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1971, vol. 324, no. 1558, pp. 301-313: The Royal Society.
    [39] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, "Effect of contact deformations on the adhesion of particles," Journal of Colloid and interface science, vol. 53, no. 2, pp. 314-326, 1975.
    [40] D. Tabor, "Surface forces and surface interactions," Journal of colloid and interface science, vol. 58, no. 1, pp. 2-13, 1977.
    [41] D. Maugis and M. Barquins, "Fracture mechanics and adherence of viscoelastic solids," in Adhesion and adsorption of polymers: Springer, 1980, pp. 203-277.
    [42] D. Maugis and B. Gauthier-Manuel, "JKR-DMT transition in the presence of a liquid meniscus," Journal of adhesion science and technology, vol. 8, no. 11, pp. 1311-1322, 1994.
    [43] Z. Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques. University of South Florida, 2011.
    [44] C. B. Walsh and E. I. Franses, "Ultrathin PMMA films spin-coated from toluene solutions," Thin Solid Films, vol. 429, no. 1, pp. 71-76, 2003.
    [45] H. Hoshino, S. Okada, H. Urakawa, and K. Kajiwara, "Gelation of poly (vinyl alcohol) in dimethyl sulfoxide/water solvent," Polymer Bulletin, vol. 37, no. 2, pp. 237-244, 1996.
    [46] B. Ohler, "Practical advice on the determination of cantilever spring constants," Bruker Application Note# AN94, vol. 1, 2007.
    [47] W. C. Young and R. G. Budynas, Roark's formulas for stress and strain. McGraw-Hill New York, 2002.
    [48] T. R. Albrecht, S. Akamine, T. Carver, and C. F. Quate, "Microfabrication of cantilever styli for the atomic force microscope," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 4, pp. 3386-3396, 1990.
    [49] H. J. Butt et al., "Scan speed limit in atomic force microscopy," Journal of microscopy, vol. 169, no. 1, pp. 75-84, 1993.
    [50] J. L. Hutter and J. Bechhoefer, "Calibration of atomic‐force microscope tips," Review of Scientific Instruments, vol. 64, no. 7, pp. 1868-1873, 1993.
    [51] X. Qian and J. S. Villarrubia, "General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation," Ultramicroscopy, vol. 108, no. 1, pp. 29-42, 2007.
    [52] J. S. Villarrubia, "Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation," Journal of Research of the National Institute of Standards and Technology, vol. 102, no. 4, p. 425, 1997.
    [53] G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang, "Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template," Nanoscale research letters, vol. 3, no. 3, p. 118, 2008.
    [54] A. Kharazmi, N. Faraji, R. M. Hussin, E. Saion, W. M. M. Yunus, and K. Behzad, "Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach," Beilstein journal of nanotechnology, vol. 6, p. 529, 2015.
    [55] F. L. Pissetti, P. L. d. Araújo, F. A. Silva, and G. Y. Poirier, "Synthesis of poly (dimethylsiloxane) networks functionalized with imidazole or benzimidazole for copper (II) removal from water," Journal of the Brazilian Chemical Society, vol. 26, no. 2, pp. 266-272, 2015.
    [56] A. C. Chang, J.-D. Liao, and B. H. Liu, "Practical assessment of nanoscale indentation techniques for the biomechanical properties of biological materials," Mechanics of Materials, vol. 98, pp. 11-21, 2016.
    [57] J. N. Israelachvili, Intermolecular and surface forces. Academic press, 2011.
    [58] Y. M. Efremov, D. Bagrov, M. Kirpichnikov, and K. Shaitan, "Application of the Johnson–Kendall–Roberts model in AFM-based mechanical measurements on cells and gel," Colloids and Surfaces B: Biointerfaces, vol. 134, pp. 131-139, 2015.

    下載圖示 校內:2024-05-28公開
    校外:2024-05-28公開
    QR CODE