| 研究生: |
翁泳聰 Weng, Yung-Tsung |
|---|---|
| 論文名稱: |
應用於即時串流的低延遲且採線性預測之前向糾錯機制 Low-delay Forward Error Correction using Linear Prediction for Real-time Video Streaming |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 共同指導教授: |
施啟煌
Shih, Chi-Huang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 向前糾錯 、影像流量預測 、即時影像串流 |
| 外文關鍵詞: | Forward Error Correction, Video Traffic Prediction, Real-Time Video Streaming |
| 相關次數: | 點閱:150 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
即時視訊串流通常使用線上(on-line)的前向糾錯機制 (Forward Error Correction; FEC),來回復傳輸中的損失,且具有低延遲的特性,使得高感知視覺品質能夠得到保證。然而,在速率變動的傳輸通道中,傳送有不同重要性的影片資料,讓FEC分配方式更加複雜。尚且,在沒有事先得知影片流量的相關資訊下,線上的前向糾錯機制更難有效地使用可用的FEC頻寬。通常,最佳的FEC分配方式是建立在一個分析的模型上,並且以離線(off-line)的方式在計算。在這篇論文中,我們提出以預測視框 (frame) 大小為基礎的FEC方法,來擴展離線的分析模型,以達成即時的FEC分配。藉由一連串的影片視框大小的預測,以一個視框接著一個視框方式,經最佳化的FEC分析模型計算,以求得個別視框的FEC分配量。為了達到上述的結果,本研究提出一個貪心演算法,藉由每次新的視框到達時,持續地修改FEC分配量,來減少因預測視框大小誤差所產生的效能降低。再者,本研究中也設計一個傳輸速率控制機制,以確保每一個影片視框,可以滿足其播出時間的限制。模擬實驗結果顯示,本研究所提出以預測為基礎的FEC方法,可以減少額外的FEC處理延遲,並且可以幾乎達到,離線的FEC分析模型所得到的感知視覺品質。
Real-time video streaming applications typically use an on-line forward error correction (FEC) technique to recover transmission losses with a low delay overhead so that the high perceived visual quality can be ensured. However, transmitting the prioritized video data over variable-rate transmission channels complicates the FEC rate allocation process, and the on-line FEC is difficult to efficiently utilize the available FEC bandwidth without the prior information of video traffic. Generally, the optimal FEC configuration can be computed off-line based on an analytical model. In this paper, a prediction-based FEC scheme is proposed to achieve the real-time FEC allocation by extending the analytical FEC model with the frame size prediction technique. Optimal FEC calculation can be conducted for a series of predicted video frames to lead a frame-by-frame FEC rate allocation, resulting in a significantly reduced data buffering delay. A greedy algorithm is proposed to mitigate the performance effects of frame-size prediction errors by continuously revising the FEC configuration each time a new frame arrives. Moreover, a transmission rate control mechanism is proposed to ensure that each video frames satisfies its presentation deadline. The simulation results show that the proposed prediction-based FEC scheme can minimize the additional FEC processing delay while achieving virtually the same perceived video quality that can be obtained by the off-line FEC model.
[1] Y. Wu, S. Kumar, F. Hu, Y. Zhu, and J.D. Matyjas, “Cross-Layer Forward Error Correction Scheme Using Raptor and RCPC Codes for Prioritized Video Transmission Over Wireless Channels,” IEEE transactions on circuits and systems for video technology ,Vol. 24, No. 6, pp. 1047-1060, Jun. 2014.
[2] I. de Fez and J.C. Guerri, “An Adaptive Mechanism for Optimal Content Download in Wireless Networks,” IEEE transactions on Multimedia, Vol. 16, No. 4, pp. 1140-1155, Jun. 2014.
[3] F.A. Ali, P. Simoens, W. Van de Meerssche, and B. Dhoedt, “Bandwidth Efficient Adaptive Forward Error Correction Mechanism with Feedback Channel,” Journal of Communications and Networks, Vol. 16, No. 3, pp. 322 – 334, Jun. 2014.
[4] C.H. Shih, “Enhancing Packet-level Forward Error Correction for Streaming Video in Wireless Networks,” IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, pp. 146-155, Sep. 2012.
[5] J. Xiao, T. Tillo, and Y. Zhao, “Real-Time Video Streaming Using Randomized Expanding Reed-Solomon Code,” IEEE Trans. On Circuits and Systems for Video Technology, Vol. 23, No. 11, pp. 1825-1836, Nov. 2013.
[6] J. Xiao, T. Tillo , C. Lin , Y. Zhang , and Y. Zhao, “A Real-Time Error Resilient Video Streaming Scheme Exploiting the Late- and Early-Arrival Packets,” IEEE Transactions on Broadcasting, Vol. 59, No. 3, pp. 432-444, Sep. 2013.
[7] J. Xiao , T. Tillo , C. Lin , and Y. Zhao, “Dynamic Sub-GOP Forward Error Correction Code for Real-Time Video Applications,” IEEE Transactions on Multimedia, Vol. 14, No. 4, pp. 1298-1308, Aug. 2012.
[8] C.H. Lin, Y.C. Wang, C.K. Shieh, and W.S. Hwang, “An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs,” Computer Networks, Vol. 56, No. 11, pp. 2590-2599, Jul. 2012.
[9] C. Díaz, J. Cabrera, F. Jaureguizar, and N. García, ” A video-aware FEC-based unequal loss protection system for video streaming over RTP,” IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, pp. 523-531, May. 2011.
[10] J. Feng, C. Xuefen, P. Lin, W. Yining, and L. Guan, “Adaptive FEC algorithm based on prediction of video quality and bandwidth utilization ratio,” Journal of Ambient Intelligence and Humanized Computing ,Vol. 1, No. 4, pp. 309-318, Dec. 2010.
[11] Y. Sohn, J. Hwang, and S.S. Kang, “Adaptive Packet-Level FEC Algorithm for Improving the Video Quality over IEEE 802.11 Networks,” International Journal of Software Engineering and Its Applications, Vol. 6, No. 3, Jul. 2012.
[12] S. Zare, and A. G. Rahbar, “Congestion control in IPTV over PON using Digital Fountain forward error correction,” Journal of Network and Computer Applications, Vol. 37, pp. 240–252, Jan. 2014.
[13] P. Ostovari, and J. Wu, “Reliable Broadcast with Joint Forward Error Correction and Erasure Codes in Wireless Communication Networks,” 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 324-332, Oct. 2015.
[14] W. Ji , W. Zhang , X. Peng, and Z. Liang, “16-channel two-parallel reed-solomon based forward error correction architecture for optical communications,” 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 239–243, Jul. 2015.
[15] A. de la Fuente, C. M. Lentisco, L. Bellido, R. P. Leal, E. Pastor, and A. G. Armada, “Analysis of the impact of FEC techniques on a multicast video streaming service over LTE,” 2015 European Conference on Networks and Communications (EuCNC), pp. 219-223, Jul. 2015.
[16] J. M. Batalla, “Advanced multimedia service provisioning based on efficient interoperability of adaptive streaming protocol and high efficient video coding,” Journal of Real-Time Image Processing, Mar. 2015.
[17] K. Park, and W. Willinger, “Self-similar network traffic and performance evaluation,” John Wiley & Sons Inc., 2000.
[18] K. Park, and W. Wang, “QoS-sensitive transport of real-time MPEG video using adaptive redundancy control,” Computer Communications, Vol. 24, No. 1, pp. 78-92, Jan. 2001.
[19] M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate Control (TFRC): Protocol Specification,” RFC3448, Jan. 2003.
[20] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno Performance: A Simple Model and Its Empirical Validation,” IEEE/ACM Transactions on Networking, Vol. 8, No. 2, pp. 133-145, Apr. 2000.
[21] H. Wu, M. Claypool, and R. Kinicki, “Adjusting Forward Error Correction with Temporal Scaling for TCP-Friendly Streaming MPEG,” ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 1, No. 4, pp. 315–337, Nov. 2005.
[22] Y. Li, Z. Li, M. Chiang, and A. R. Calderbank,“Content-Aware Distortion-Fair Video Streaming in Congested Networks,” IEEE Transaction on Multimedia, Vol. 11, No. 6, Oct. 2009.
[23] Y. L. Chang, T. L. Lin, and P. C. Cosman, “Network-Based H.264/AVC Whole-Frame Loss Visibility Model and Frame Dropping Methods,” IEEE Transactions on Image Processing, Vol. 21, No. 8, pp. 3353-3363, Aug. 2012.
[24] Y. Yuan, B. F. Cockburn, T. Sikora, and M. Mandal, “Efficient allocation of packet-level forward error correction in video streaming over the internet,” Journal of Electronic Imaging, Vol.16, No. 2, Apr. 2007.
[25] C.I. Kuo, C.K. Shieh, W.S. Hwang, and C.H. Ke, “Performance modeling of FEC-based unequal error protection for H.264/AVC video streaming over burst-loss channels,” Int. J. Commun. Syst., Jun. 2014.
[26] C.I. Kuo, C.H. Shih, C.K. Shieh, W.S. Hwang, and C.H. Ke, “Modeling and Analysis of Frame-Level Forward Error Correction for MPEG Video over Burst-Loss Channels,” Appl. Math. Inf. Sci., Vol. 8, No.4, pp. 1845-1853, 2014.
[27] Z. Li , J. Chakareski, L. Shen, and L. Wang, ” Video Quality in Transmission over Burst-Loss Channels: A Forward Error Correction Perspective,” IEEE Communication Letters, Vol. 15, No. 2, pp. 238-240, Feb. 2011.
[28] Z. Li , J. Chakareski, X. Niu, Y. Zhang, and W. Gu, “Modeling of Distortion Caused by Markov-model Burst Packet Losses in Video Transmission,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 19, No. 7, pp. 917–931, Jul. 2009.
[29] M. Natkaniec, and A. R. Pach, “Simulation Analysis of Multimedia Streams Transmission in IEEE 802.11 Networks,” ISWC’99 IEEE International Symposium on Wireless Communications, Victoria, Canada, Jun. 1999
[30] U. K. Sarkar, S. Ramakrishnan, and D. Sarkar, “Modeling full-length video using Markov-modulated Gamma-based framework,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 638–649, 2003.
[31] S. Tanwir and H. Perros, “A Survey of VBR Video Traffic Model,” IEEE Communications Surveys & Tutorials, Vol. 15, No. 4, pp. 1778-1802, Nov. 2013.
[32] D.M. Lucantoni, M.F. Neuts, and A.R. Reibman, “Methods for performance evaluation of VBR video traffic models,” IEEE/ACM Transactions on Networking, Vol. 2, No. 2, pp. 176–180, Apr. 1994.
[33] M. Nomura, T. Fujii, and N. Ohta, “Basic characteristics of variable rate video coding in ATM environment,” IEEE J. Sel. Areas Commun., vol. 7, no. 5, pp. 752–760, 1989.
[34] H. Koumaras, C. Skianis, and A. Kourtis, “Analysis and modeling of H.264 unconstrained VBR video traffic,” International Journal of Mobile Computing and Multimedia Communication, IGI-Global, vol. 1, no. 4, pp. 4–31, July 2009.
[35] F. Yegenoglu, B. Jabbari, and Y. Zhang, “Motion-classified autoregressive modeling of variable bit-rate video,” Circuits Systems Video Technology, vol. 3, no. 1, pp. 42–53, 1993.
[36] G. Chiruvolu, T. K. Das, R. Sankar, and N. Ranganathan, “A scene-based generalized Markov chain model for VBR video traffic,” ICC 98, vol. 1, pp. 554–558, June 1998.
[37] A. M. Adas, “Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model,” IEEE/ACM Transactions on Networking, Vol. 6, No.5, pp. 635-644, Oct. 1998.
[38] Y.H. Tseng, E.H.K. Wu, and G.H. Chen, “Scene-Change Aware Dynamic Bandwidth Allocation for Real-Time VBR Video Transmission Over IEEE 802.15.3 Wireless Home Networks,” IEEE Transactions on Multimedia, Vol. 9, No. 3, pp. 642-654, Apr. 2007.
[39] G. Chiruvolu, R. Sankar, and N. Ranganathan, “Adaptive VBR video traffic management for higher utilization of ATM networks,” ACMSIGCOMM Comput. Commun. Rev., vol. 28, pp. 27–40, 1998.
[40] S. J. Yoo, “Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed networks,” IEEE Trans. Broadcast., vol. 48, no. 1, pp. 10–18, 2002.
[41] S. Feng and R. Sankar, “Limitation of and improvement to linear prediction and smoothing-based bandwidth allocation for VBR traffic,” in Proc. IEEE GLOBECOM ’99, 1999, vol. 1A, pp. 209–213.
[42] Y. Liang, “Real-Time VBR Video Traffic Prediction for Dynamic Bandwidth Allocation,” IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and reviews, Vol. 34, No. 1, pp. 32-47, Feb. 2004.
[43] Y. Liang and M. Han, “Dynamic Bandwidth Allocation Based on Online Traffic Prediction for Real-Time MPEG-4 Video Streams,” EURASIP journal on Advances in Signal Processing, Vol. 2007.
[44] S. Chong, S. Li, and J. Ghosh, “Predictive dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 1, pp. 12–23, 1995.
[45] A. Bhattacharya, A. G. Parlos, and A. F. Atiya, “Prediction of MPEG-coded video source traffic using recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 51, no. 8, pp. 2177–2190, 2003.
[46] Haykin, S., “Adaptive filter theory,” Prentice Hall, 1991.
[47] HHI Fraunhofer Institute, H.264/AVC Reference Software. [Online]. Available: http://iphome.hhi.de/suehring/tml/
[48] EvalVid – A Video Quality Evaluation Tool. [Online] Available: http://www2.tkn.tu-berlin.de/research/evalvid/fw.html.
[49] https://media.xiph.org/video/derf/
[50] ITU-T. Recommendation H.264, Advanced video coding for generic audiovisual services, 2010.
[51] Haykin, S.: Neural Networks - A Comprehensive Foundation, New York: Macmillan College Publishing Company, 1994.
[52] M. Oravec, J. Polec, S. Marchevský a kol.: Neural Networks for Digital Signal Processing (in Slovak language), Faber, Bratislava, 1998.
[53] C. Kuo, C. Shih, C. Shieh, W. Hwang, Prediction-based loss recovery for frame-level streaming video, IEEE GLOBECOM Workshops, pp. 72-76, 2011.