| 研究生: |
王尹玄 Wang, Yin-Hsuan |
|---|---|
| 論文名稱: |
非都會區蔬果物流碳排分析-以芭樂為例 Non-metropolitan area fruits and vegetables logistics carbon emission analysis - A case study of guava |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系碩士在職專班 Department of Transportation and Communication Management Science(on-the-job training program) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 溫室氣體 、貨櫃航運 、物流運輸 、生命週期分析法 、碳足跡 |
| 外文關鍵詞: | Greenhouse gas, Logistics and transportation, Alternative fuel, Life cycle analysis, Carbon footprint |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球溫度的不斷上升,伴隨著各種的氣候災難。聯合國(UN)以及各國紛紛開始制定政策及一連串相關的減碳措施,以減緩溫室氣體的排放,台灣身為出口導向的國家,針對各國提出針對氣候變遷制定的條款須更謹慎,以確保商品能順利且在碳排放標準內順利出口。因此,本研究針對台灣農產品中之芭樂進行碳足跡分析,並計算碳排放,確認排放熱點,作為未來台灣農產品出口時碳足跡盤查的參考。研究結果顯示,芭樂生命週期碳足跡為1.0623 CO2e/Kg,各階段碳排放依序為:生產階段(0.1774 CO2e/Kg),包裝階段(0.0591 CO2e/Kg),運輸階段(0.0826 CO2e/Kg)。對於芭樂整體碳足跡排放的影響,若將運輸工具置換成混和動力車,整體碳足跡將下降至0.2544 CO2e/Kg,運輸階段占整體碳排放量的7.2%;將運輸工具換成天然氣燃料車,碳足跡則為0.2552 CO2e/Kg,運輸階段占整體碳排放量的7.35%,使用電池燃料車,因運輸階段不排放, 因此運輸階段占整體碳排放量的0%; 若考量運輸工具製造及回收階段的整體碳足跡,計算後,使用電池燃料車作為芭樂運輸工具的芭樂生命碳足跡放量為0.2414 CO2e/Kg運輸階段佔整體芭樂碳排放的2.03%。本研究建議,使用電池燃料車相較目前之柴油貨車,整體碳排放下降24.30%,整體碳排放下降最多。
As global temperatures continue to rise, various climate disasters will occur. The United Nations (UN) and various countries have begun to formulate policies and a series of related carbon reduction measures to slow down greenhouse gas emissions. As an export-oriented country, Taiwan must be more cautious in the provisions proposed by countries on climate change to ensure that products can Export smoothly and within carbon emission standards. Therefore, this study conducts a carbon footprint analysis on guava of Taiwan's agricultural products, calculates carbon emissions, and identifies emission hotspots as a reference for carbon footprint inventory when exporting Taiwan's agricultural products in the future. Research results show that Guava’s life cycle carbon footprint is 1.0623CO2e/Kg, and the carbon emissions at each stage are: production stage (0.1774CO2e/Kg), packaging stage (0.0591CO2e/Kg), and transportation stage (0.0826CO2e/Kg) . Regarding the overall carbon footprint impact of guava, considering the replacement of transportation vehicles with different options, shows the following results: If hybrid vehicles are used, the overall carbon footprint decreases to 0.2544CO2e/Kg, with the transportation phase accounting for 7.2% of total carbon emissions. If natural gas vehicles are used, the carbon footprint is 0.2552CO2e/Kg, with the transportation phase contributing 7.35% to total carbon emissions. Battery-powered vehicles do not emit during the transportation phase, resulting in this phase contributing 0% to total carbon emissions.When considering the entire life cycle including vehicle manufacturing and recycling stages, the guava's life cycle carbon footprint when transported using battery-powered vehicles is 0.2414CO2e/Kg, with the transportation phase accounting for 2.03% of total guava carbon emissions. This study suggests that using battery-powered vehicles reduces the overall carbon emissions of guava transportation by 24.30% compared to current diesel trucks, making it the most effective option for reducing overall carbon emissions.
Aliyi, I., Faris, A., Ayele, A., Oljirra, A., & Bayessa, M. (2021). Profitability and market performance of smallholder vegetable production: evidence from Ethiopia. Heliyon, 7(9), e08008.
Atinga, E., & Bannor, R. K. (2022). Marketing efficiency and sales outlet choice among fuelwood harvesters in the Bono Region of Ghana. Trees, Forests and People, 10, 100328.
Berton, M., Bovolenta, S., Corazzin, M., Gallo, L., Pinterits, S., Ramanzin, M., . . . Sturaro, E. (2021). Environmental impacts of milk production and processing in the Eastern Alps: A “cradle-to-dairy gate” LCA approach. Journal of Cleaner Production, 303, 127056.
Cancino-Espinoza, E., Vázquez-Rowe, I., & Quispe, I. (2018). Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Science of The Total Environment, 637-638, 221-232.
Cang, Y.-m., & Wang, D.-c. (2021). A comparative study on the online shopping willingness of fresh agricultural products between experienced consumers and potential consumers. Sustainable Computing: Informatics and Systems, 30, 100493.
Conference of the Parties. (2021). Glasgow Climate Pact. Retrieved from https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26
European Commission. (2019). European Green Deal. Retrieved 2024/3/28 from
Gabriel, N. R., Martin, K. K., Haslam, S. J., Faile, J. C., Kamens, R. M., & Gheewala, S. H. (2021). A comparative life cycle assessment of electric, compressed natural gas, and diesel buses in Thailand. Journal of Cleaner Production, 314, 128013.
Guo, J., Hao, H., Wang, M., & Liu, Z. (2022). An empirical study on consumers' willingness to buy agricultural products online and its influencing factors. Journal of Cleaner Production, 336, 130403.
Hensher, D. A., Wei, E., & Balbontin, C. (2022). Comparative assessment of zero emission electric and hydrogen buses in Australia. Transportation Research Part D: Transport and Environment, 102, 103130.
Intergovernmental Panel on Climate Change. (2023). R6 Synthesis Report. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-cycle/
Iriarte, A., Yáñez, P., Villalobos, P., Huenchuleo, C., & Rebolledo-Leiva, R. (2021). Carbon footprint of southern hemisphere fruit exported to Europe: The case of Chilean apple to the UK. Journal of Cleaner Production, 293, 126118.
Jelti, F., Allouhi, A., Al-Ghamdi, S. G., Saadani, R., Jamil, A., & Rahmoune, M. (2021). Environmental life cycle assessment of alternative fuels for city buses: A case study in Oujda city, Morocco. International Journal of Hydrogen Energy, 46(49), 25308-25319.
Jirapornvaree, I., Suppadit, T., & Kumar, V. (2021). Assessing the economic and environmental impact of jasmine rice production: Life cycle assessment and Life Cycle Costs analysis. Journal of Cleaner Production, 303, 127079.
Li, J., Tian, Y., Deng, Y., Zhang, Y., & Xie, K. (2021). Improving the estimation of greenhouse gas emissions from the Chinese coal-to-electricity chain by a bottom-up approach. Resources, Conservation and Recycling, 167, 105237.
LIBRARY, A. D. (2022). Retrieved 2024/3/30 from https://data.adb.org
Lo-Iacono-Ferreira, V. G., Viñoles-Cebolla, R., Bastante-Ceca, M. J., & Capuz-Rizo, S. F. (2020). Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis. Journal of Cleaner Production, 244, 118784.
Logan, K. G., Nelson, J. D., McLellan, B. C., & Hastings, A. (2021). Japan and the UK: Emission predictions of electric and hydrogen trains to 2050. Transportation Research Interdisciplinary Perspectives, 10, 100344.
Negi, D. S., Birthal, P. S., Roy, D., & Khan, M. T. (2018). Farmers’ choice of market channels and producer prices in India: Role of transportation and communication networks. Food Policy, 81, 106-121.
Pizzol, M. (2019). Deterministic and stochastic carbon footprint of intermodal ferry and truck freight transport across Scandinavian routes. Journal of Cleaner Production, 224, 626-636.
Sori, O., & Adugna, M. (2022). Determinants of groundnut producers’ market channel choice in Western Oromia region, Ethiopia. Journal of Agriculture and Food Research, 7, 100277.
The Economic and Social Commission for Asia and the Pacific. (2022). Committee on Transport Seventh session. Retrieved 2024/4/23 from.
United Nations. Paris Agreement. Retrieved 2024/4/25 from https://www.un.org
Urbano, B., Barquero, M., & González-Andrés, F. (2022). The environmental impact of fresh tomatoes consumed in cities: A comparative LCA of long-distance transportation and local production. Scientia Horticulturae, 301, 111126.
World Meteorological Organization. (2020). United in Science 2022. Retrieved 2024/5/10 from https://public.wmo.int/en/resources/united_in_science
Zhao, J., Zhang, Y., Patton, A. P., Ma, W., Kan, H., Wu, L., . . . Walker, K. (2020). Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. Environmental Pollution, 263, 114643.
Zhao, Y., Onat, N. C., Kucukvar, M., & Tatari, O. (2016). Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transportation Research Part D: Transport and Environment, 47, 195-207.
行政院環境保護署.(2022).中華民國國家溫室氣體排放清冊報告Retrieved 2024/3/8 from.https://unfccc.saveoursky.org.tw/nir/tw_nir_2022.php)
財政部關務署.(2022).海關進出口資料查詢Retrieved 2024/3/10 from https://portal.sw.nat.gov.tw/APGA/GA30
行政院經濟部主計總處.(2022).資料統計Retrieved 2024/3/30 from https://www.dgbas.gov.tw/Default.aspx
產品碳足跡資訊網(2023).碳足跡資料庫Retrieved 2024/4/25 from https://cfp-calculate.tw/cfpc/WebPage/index.aspx
校內:2028-07-17公開