| 研究生: |
蔡忠剛 Tsai, Chung-kang |
|---|---|
| 論文名稱: |
InGaAs量子點與量子井變功率螢光光譜研究 A Power-dependent Photoluminescence study on InGaAs Quantum Dot and Quantum Well |
| 指導教授: |
田興龍
Tien, Shien-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 量子井 、量子點 |
| 外文關鍵詞: | Quantum Dot, Quantum Well |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文以變功率的光激發螢光實驗在研究以不同溫度成長之InGaAs量子點(Quantum Dot , QD)與量子井(Quantum Well , QW)結構,並觀察量子點與量子井GaAs的螢光能量位置及強度隨激發光強度變化。我們發現在低激發功率下,光激發螢光光譜上波峰位置並不會隨激發功率的變化而改變;但在高激發功率下,光激發螢光光譜上波峰位置會隨機發功率的增加而增加。將激發功率取對數值對光激發螢光光譜上波峰位置作圖後發現在QW的部分會達飽和(saturate),而在QD的部份則無此飽和的現象,這是由於QD之能態態密度(density of state)為δ函數之緣故。QD能量位移常數 之值大於QW之 值。此外,改變激發光的強度,來探討不同量子結構的發光效率,實驗結果顯示QD之發光效率較QW好。最後藉由因變化激發功率所造成熱電子的效應並找出GaAs(111)的LO聲子能量,其能量約為36meV。
The power-dependent photoluminescence (PL) measurement were taken on InGaAs quantum dots (QDs) and quantum wells (QWs) grown at different temperatures. The PL peak position is independent on pumping power for QDs and QWs under lower power excitation while it increases as the pumping intensity increases under high power excitation. The increasing peak position approaches to a constant value for QWs and this behavior is not observed for QDs dues to the delta-functional density of states. The energy shift constant,β,evaluated from the relation between peak position and the pumping power, and the radiative efficiency of QD are larger than that of QW. Finaiiy, the GaAs(111) LO-phonon energy can be estimated as about 36meV from the higher energy side of the GaAs PL specturm.
[1] S. L. Tyan, P. A. Shields, R. J. Nicholas, F. Y.
Tasi,C. P.Lee,“Magneto-Photoluminescence Study of
InGaAs/GaAs Quantum Wells and Quantum Dots Grown on
(111)B GaAs Substrate” J. Appl. Phys.39,3286(2000)
[2] S. L. Tyan, Y. G. Lin, F. Y. Tasi, C. P. Lee, P. A.
Shields, R. J. Nicholas“ InGaAs/GaAs Quantum Wells
and Quantum Dots on (111)B Orientation” Solid State
Communications, 117,649(2001)
[3] H. Frohlich, and F. Seitz, Phys. Rev., Vol.79, pp.526,
1950.
[4] H. M. Yoo, F. S .Ohuchi, and T. G. Stoebe,“ Influence
of substrate temperature on the growth of InGaAs
layers on (111)B GaAs, ”J.Vac.Sci.Technol .B11,542
(1993).
[5] Takayoshi Anan, Kenichi Nishi, and Sigeo Sugou
“Critical layer thickness on (111)B-oriented
InGaAs/GaAs heteroepita, ”Appl. Phys. Lett. 60,3159
(1992).
[6] A. Y. Cho,“Morphology of Epitaxial Growth of GaAs by
Molecular Beam Method :The Observation of Surface
Satuctures, ” J. Appl. Phys. 41,2780(1970).
[7] F. Y. Tasi and C. P. Lee, “InGaAs/GaAs quantum dots
on (111)B GaAs substrates, ” J. Appl. Phys. 84 2624
(1998).
[8] J. M. Lanneli , J. Maserjian , B. R. Hancock,
P.O. Andersson, and F. J. Grunthaner. “ Optically
controlled absorption modulator based on state illing
of InxGa1-XAs/GaAs quantum wells ”Appl, Phys. Lett.
54(4),23(1989).
[9] Bing Guo , Z. R. Qiu and K. S. Wong. “ Intensity
dependence and transient dynamics of donor-acceptor
pair recombination in ZnO thin films grown on (001)
silicon ”Appl, Phys. Lett.82,14(2003)
[10] P. W. Yu. “ Excitation-dependent emission in Mg-,
Be-, Cd-, and Zn- implanted GaAs ” J. Appl, Phys.
48,5043 (1977)
[11] R. G. Ulbrich, Solid-Sf. Electron.21,51(1978)
[12] A. Mooradian and H. Y. Fan. “Recombination Emission
in InSb ” Phys. Rev. 148,873(1966)
[13] Jagdeep Shah and R. C. C. Leite, “ Radlative
Recombination From Photoexcited Hot Carriers in
GaAs ”Phys. Rev. Lett 22,1304(1964)
[14] Gerald Burns, F. H. Dacol, C. R. Wie, E. Burstein,
and M. Cardona. “Phonon Shift in Ion Bombarded GaAs:
Raman Measurements ”Solid State Communication ,Vol
62. 7, PP449(1987)