簡易檢索 / 詳目顯示

研究生: 楊士箴
Yang, Shih-Chen
論文名稱: 建立基因工程大腸桿菌全細胞催化系統生產丁二胺
Establish whole-cell biotransformation system for putrescine production in engineered Escherichia coli
指導教授: 吳意珣
Ng, I-Son
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 1,4-丁二胺全細胞催化精胺酸脫羧酶胍丁胺酶細胞冷激
外文關鍵詞: 1,4-Diaminobutane, Putrescine, Whole-cell biotransformation, Arginine decarboxylase, Agmatinase
相關次數: 點閱:67下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應氣候變遷與石油危機,人類在永續發展的意識更為高漲,以生物合成取代傳統的石化塑料的研究與應用也日益增加。1,4-丁二胺,又稱為腐胺,是合成聚醯胺尼龍46的重要單體,為實現永續的化學工業,本研究以精胺酸脫羧酶途徑中的兩個關鍵酶:精胺酸脫羧酶(SpeA)與胍丁胺脢(SpeB),開發一種高效的丁二胺全細胞生物催化製程。
    最初利用田口方法測試最佳催化條件,並比較HPLC與呈色法分析的差異。接著利用雙質體、單質體的不同組合表達雙酶,結果顯示單一質體共同表達雙酶能獲得最佳的蛋白平衡。在菌株開發上,E. coli WT7L 與 BL21(DE3)擁有最高的丁二胺產量,以最佳催化反應條件 pH 9、1 mM PLP 與 10 mM Mg2+ 可分別生產 11.3 g/L 與 12.5 g/L 的丁二胺;然而在細胞培養基優化時發現 WT7L 菌株比 BL2(DE3)擁有更好的穩定性。於酶動力學分析發現 SpeA (1212 s-1)的 kcat 值比 SpeB (418 s-1)來得高,但丁二胺對 SpeA 活性有嚴重的抑製作用(KI 8.61 mM 及 Km 15.5),因此蛋白表面展示對全細胞催化法更不利。
    由於 SpeA 易失活的特性,使得全細胞在一次反應回收的酶活降低。為了防止副產物與產物對酶活的抑制,進行兩步法催化,再搭配細胞冷激加強反應物於細胞膜之間的運輸,最後可利用 50 g/L 的精胺酸鹽酸鹽生成 17.1 g/L 的丁二胺,產率為 8.65 g/L/h,轉化率達到 85 %。
    本研究全面探討了雙酶共同表達的設計與轉錄因子對質體穩定性的影響,透過反應與培養基的操作優化製程,提供了高效全細胞催化生產丁二胺的方法,後續可進一步放大製程並降低丁二胺的生產成本。

    The rising awareness of environmental protection has triggered bio-based materials to replace the traditional petrochemical plastics. Putrescine as 1,4-diaminobutane is an important monomer of polyamide (PA) and uses in the sustainable chemical industry. Herein, a time-effective whole cell bioconversion of arginine to putrescine was developed, which has applied the key enzymes (i.e., SpeA and SpeB) from the arginine decarboxylase (ADC) pathway. Taguchi L9 method was employed to the preliminary test of whole-cell biotransformation. The synergetic collaboration of both enzymes was examined from the different combination of plasmids among 4 Escherichia coli chassis. The optimal reaction condition was at pH 9 with 1mM pyridoxal-5’-phosphate (PLP) and 10 mM magnesium, thus 90% and 100% conversion were obtained using an all-in-one plasmid with equal protein of SpeA and SpeB in BL21(DE3) and WT7L, respectively. The enzymatic kinetics demonstrated the higher kcat of SpeA (1212 s-1) than that of SpeB (418 s-1), while severe inhibition of putrescine on SpeA (KI = 8.61 mM), thus it was disadvantage using the surface display of enzyme. To prevent the feedback-inhibition by product, a 2-step enzymatic reaction with cold treatment was conducted. Finally, the putrescine was achieved 17.1 g/L with the productivity of 8.56 g/L/h under 85% conversion of 50 g/L L-arginine, which is an effective approach to obtain high putrescine titer.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 符號 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究目的與架構 1 第二章 文獻回顧 4 2.1 生質塑膠與二元胺的發展 4 2.1.1 生質塑膠開發 4 2.1.2 生質二元胺開發及應用 5 2.2 生質丁二胺合成與應用 6 2.2.1 生物體內的丁二胺合成途徑 6 2.2.2 鳥胺酸代謝途徑(ODC pathway)生產丁二胺 8 2.2.3 精氨酸代謝途徑(ADC pathway)生產丁二胺 10 2.2.4 丁二胺的應用 11 2.3 利用全細胞催化法(Whole-cell biotransformation)之化學品生產 12 2.4 細胞膜質傳影響 13 2.4.1 表面展示蛋白系統 13 2.4.2 化學與物理法處理 15 第三章 實驗材料與方法 17 3.1 實驗藥品 17 3.2 實驗儀器 20 3.3 菌株、質體及引物材料 21 3.4 溶液配製 24 3.5 實驗方法 26 3.5.1 菌株培養與保存 26 3.5.2 基因重組構建 27 3.5.2.1 基因組抽取與質體抽取 (Genomic & Plasmid DNA Extraction ) 27 3.5.2.2 基因同源整合 (Phage-assist homologous Integration) 29 3.5.2.3 聚合酶酵素連鎖反應 (PCR & POE-PCR) 29 3.5.2.4 DNA電泳分析與膠體回收 (DNA gel extraction) 31 3.5.2.5 限制酶酶切 (Restriction enzyme digestion) 32 3.5.2.6 勝任細胞製備 (Competent cell & Transformation) 33 3.5.2.7 基因接合反應與轉化 (Ligation and Transformation) 33 3.5.3 蛋白樣品收集及分析 34 3.5.3.1 間質蛋白 (Periplasmic protein, PP) 提取 34 3.5.3.2 全細胞胰蛋白酶處理 (Trypsin Digestion) 34 3.5.3.3 高壓破碎獲取胞內蛋白 35 3.5.3.4 蛋白質濃度測定 35 3.5.3.5 一維蛋白質電泳分析 36 3.5.4 酶活性與動力學分析 37 3.5.4.1 動力學與酶活測試 38 3.5.4.2 酶活競爭抑制測試 40 3.5.5 全細胞催化法生產丁二胺 41 3.5.5.1 全細胞冷激法 42 3.5.5.2 全細胞回收法 42 3.5.6 丁二胺產量測定 42 3.5.6.1 呈色法測定 42 3.5.6.2 高效液相層析儀(HPLC)測定 43 3.5.7 定量PCR (qPCR) 45 3.5.8 掃描電子顯微鏡(SEM)分析 46 第四章 結果與討論 47 4.1 建立誘導型表達系統與全細胞催化測試 47 4.1.1 質體構建與蛋白表達 47 4.1.2 田口 (Taguchi ) 實驗設計分析與催化測試 48 4.1.3 HPLC分析與呈色法分析之比較 51 4.2 雙酶SpeA與SpeB的協同表達系統 52 4.2.1 單質體與雙質體表達 52 4.2.2 基因組整合型菌株 56 4.3 宿主代謝調控與篩選 58 4.4 催化反應與細胞培養優化 61 4.4.1 全細胞催化反應條件優化 61 4.4.2 細胞培養基優化與冷激測試 62 4.4.3 全細胞回收再生利用 66 4.5 雙酶SpeA與SpeB的酶特性分析 67 4.5.1 酶活性與動力學分析 67 4.5.2 酶於細胞膜位置分析 70 4.6 建立兩步法全細胞催化 73 4.7 效益評估 75 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 80 第六章 參考文獻 81 附錄 93

    [1] Bagni, N., Serafini-Fracassini, D., Torrigiani, P., & Villanueva, V. R. (1986). Polyamine Biosynthesis in Germinating Apple Pollen. In D. L. Mulcahy, G. B. Mulcahy, & E. Ottaviano, Biotechnology and Ecology of Pollen New York, NY.
    [2] Bais, H. P., Sudha, G. S., & Ravishankar, G. A. (2000). Putrescine and Silver Nitrate Influences Shoot Multiplication, In Vitro Flowering and Endogenous Titers of Polyamines in Cichorium intybus L. cv. Lucknow Local. Journal of Plant Growth Regulation, 19(2), 238-248. https://doi.org/10.1007/s003440000012
    [3] Becker, S., Schmoldt, H. U., Adams, T. M., Wilhelm, S., & Kolmar, H. (2004). Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Current Opinion in Biotechnology, 15(4), 323-329. https://doi.org/10.1016/j.copbio.2004.06.001
    [4] Besingi, R. N., & Clark, P. L. (2015). Extracellular protease digestion to evaluate membrane protein cell surface localization. Nature Protocols, 10(12), 2074-2080. https://doi.org/10.1038/nprot.2015.131
    [5] Borkowski, O., Ceroni, F., Stan, G. B., & Ellis, T. (2016). Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Current Opinion in Biotechnology, 33, 123-130. https://doi.org/10.1016/j.mib.2016.07.009
    [6] Boyle, J. (2008). Molecular biology of the cell, 5th edition by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Biochemistry and Molecular Biology Education, 36(4), 317-318. https://doi.org/10.1002/bmb.20192
    [7] Brockman, I. M., & Prather, K. L. J. (2015). Dynamic metabolic engineering: New strategies for developing responsive cell factories. Biotechnology Journal, 10(9), 1360-1369. https://doi.org/10.1002/biot.201400422
    [8] Buch, J. K., & Boyle, S. M. (1985). Biosynthetic arginine decarboxylase in Escherichia coli is synthesized as a precursor and located in the cell envelope. Journal of Bacteriology 163(2), 522-527. https://doi.org/10.1128/jb.163.2.522-527.1985
    [9] Chae, T. U., Kim, W. J., Choi, S., Park, S. J., & Lee, S. Y. (2015). Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Scientific Reports, 5(1), 13040. https://doi.org/10.1038/srep13040
    [10] Chen, G.-Q., & Patel, M. K. (2012). Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chemical Reviews, 112(4), 2082-2099. https://doi.org/10.1021/cr200162d
    [11] Choi, J.-M., Han, S.-S., & Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443-1454. https://doi.org/10.1016/j.biotechadv.2015.02.014
    [12] Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. (2019). Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends in Biotechnology, 37(8), 817-837. https://doi.org/10.1016/j.tibtech.2019.01.003
    [13] Cress, B. F., Trantas, E. A., Ververidis, F., Linhardt, R. J., & Koffas, M. A. G. (2015). Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Current Opinion in Biotechnology, 36, 205-214. https://doi.org/10.1016/j.copbio.2015.09.007
    [14] de Carvalho, C. C. C. R. (2017). Whole cell biocatalysts: essential workers from Nature to the industry. Microbial Biotechnology, 10(2), 250-263. https://doi.org/10.1111/1751-7915.12363
    [15] Dros, A. B., Larue, O., Reimond, A., De Campo, F., & Pera-Titus, M. (2015). Hexamethylenediamine (HMDA) from fossil- vs. bio-based routes: an economic and life cycle assessment comparative study. Green Chemistry, 17(10), 4760-4772. https://doi.org/10.1039/C5GC01549A
    [16] Falasca, G., Franceschetti, M., Bagni, N., Altamura, M. M., & Biasi, R. (2010). Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. Plant Physiology and Biochemistry, 48(7), 565-573. https://doi.org/10.1016/j.plaphy.2010.02.013
    [17] Fazilati, M., & Forghani, A. H. (2015). The role of polyamine to increasing growth of plant: As a key factor in health crisis. International Journal of Health System and Disaster Management, 3, 89.
    [18] Forouhar, F., Lew, S., Seetharaman, J., Xiao, R., Acton, T. B., Montelione, G. T., & Tong, L. (2010). Structures of bacterial biosynthetic arginine decarboxylases. Acta Crystallographica Section F: Structural Biology Communications, 66(Pt 12), 1562-1566. https://doi.org/10.1107/S1744309110040649
    [19] Gawarzewski, I., DiMaio, F., Winterer, E., Tschapek, B., Smits, S. H. J., Jose, J., & Schmitt, L. (2014). Crystal structure of the transport unit of the autotransporter adhesin involved in diffuse adherence from Escherichia coli. Journal of Structural Biology, 187(1), 20-29. https://doi.org/10.1016/j.jsb.2014.05.003
    [20] González-Hernández, A. I., Scalschi, L., Vicedo, B., Marcos-Barbero, E. L., Morcuende, R., & Camañes, G. (2022). Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. International Journal of Molecular Sciences, 23(6), 2971. https://doi.org/10.3390/ijms23062971
    [21] Gupta, S., Agarwal, V. P., & Gupta, N. K. (2012). Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 18(4), 331-336. https://doi.org/10.1007/s12298-012-0123-9
    [22] Gutknecht, J., Bisson, M. A., & Tosteson, F. C. (1977). Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. Journal of General Physiology, 69(6), 779-794. https://doi.org/10.1085/jgp.69.6.779
    [23] Hama, S., Yamaji, H., Kaieda, M., Oda, M., Kondo, A., & Fukuda, H. (2004). Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, 21(2), 155-160. https://doi.org/10.1016/j.bej.2004.05.009
    [24] Holtz, W. J., & Keasling, J. D. (2010). Engineering Static and Dynamic Control of Synthetic Pathways. Cell, 140(1), 19-23. https://doi.org/10.1016/j.cell.2009.12.029
    [25] Huang, F.-Y., Wang, C.-C., Huang, Y.-H., Zhao, H.-G., Guo, J.-L., Zhou, S.-L., Wang, H., Lin, Y.-Y., & Tan, G.-H. (2014). Antigen 43/Fcε3 chimeric protein expressed by a novel bacterial surface expression system as an effective asthma vaccine. Immunology, 143(2), 230-240. https://doi.org/10.1111/imm.12302
    [26] Hui, H., Bai, Y., Fan, T.-P., Zheng, X., & Cai, Y. (2020). Biosynthesis of Putrescine from L-arginine Using Engineered Escherichia coli Whole Cells. Catalysts, 10(9). https://doi.org/10.3390/catal10090947
    [27] IfBB – Institute for Bioplastics and Biocomposites. (2022). Biopolymers Facts and Statistics.
    [28] Iyer, R. K., Kim, H. K., Tsoa, R. W., Grody, W. W., & Cederbaum, S. D. (2002). Cloning and characterization of human agmatinase. Molecular Genetics and Metabolism, 75(3), 209-218. https://doi.org/10.1006/mgme.2001.3277
    [29] Jing, K., Guo, Y., & Ng, I. S. (2019). Antigen-43-mediated surface display revealed in Escherichia coli by different fusion sites and proteins. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0248-6
    [30] Jose, J. (2006). Autodisplay: efficient bacterial surface display of recombinant proteins. Applied Microbiology and Biotechnology, 69(6), 607-614. https://doi.org/10.1007/s00253-005-0227-z
    [31] Jose, J., & von Schwichow, S. (2004). Autodisplay of Active Sorbitol Dehydrogenase (SDH) Yields a Whole Cell Biocatalyst for the Synthesis of Rare Sugars. ChemBioChem, 5(4), 491-499. https://doi.org/10.1002/cbic.200300774
    [32] Kawaguchi, H., Ogino, C., & Kondo, A. (2017). Microbial conversion of biomass into bio-based polymers. Bioresource Technology, 245, 1664-1673. https://doi.org/10.1016/j.biortech.2017.06.135
    [33] Kim, H. T., Baritugo, K.-A., Oh, Y. H., Hyun, S. M., Khang, T. U., Kang, K. H., Jung, S. H., Song, B. K., Park, K., Kim, I.-K., Lee, M. O., Kam, Y., Hwang, Y. T., Park, S. J., & Joo, J. C. (2018). Metabolic Engineering of Corynebacterium glutamicum for the High-Level Production of Cadaverine That Can Be Used for the Synthesis of Biopolyamide 510. ACS Sustainable Chemistry & Engineering, 6(4), 5296-5305. https://doi.org/10.1021/acssuschemeng.8b00009
    [34] Kim, S.-j., Song, J. K., & Kim, H. K. (2013). Cell surface display of Staphylococcus haemolyticus L62 lipase in Escherichia coli and its application as a whole cell biocatalyst for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 97, 54-61. https://doi.org/10.1016/j.molcatb.2013.07.017
    [35] Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., & Ueda, M. (2008). Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. Journal of Bioscience and Bioengineering, 105(6), 622-627. https://doi.org/10.1263/jbb.105.622
    [36] Kramer, U., Rizos, K., Apfel, H., Autenrieth, I. B., & Lattemann, C. T. (2003). Autodisplay: Development of an Efficacious System for Surface Display of Antigenic Determinants in Salmonella Vaccine Strains. Infection and Immunity, 71(4), 1944-1952. https://doi.org/doi:10.1128/IAI.71.4.1944-1952.2003
    [37] Kurihara, S., Oda, S., Kato, K., Kim, H. G., Koyanagi, T., Kumagai, H., & Suzuki, H. (2005). A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. Journal of Biological Chemistry, 280(6), 4602-4608. https://doi.org/10.1074/jbc.M411114200
    [38] Lawrence, J. H., Tomaselli, G. F., & Marban, E. (1993). Ion channels: structure and function. Heart Disease and Stroke, 2(1), 75-80.
    [39] Leder, I. G. (1972). Interrelated Effects of Cold Shock and Osmotic Pressure on the Permeability of the Escherichia coli Membrane to Permease Accumulated Substrates. Journal of Bacteriology, 111(1), 211-219. https://doi.org/doi:10.1128/jb.111.1.211-219.1972
    [40] Lee, S. Y., Choi, J. H., & Xu, Z. (2003). Microbial cell-surface display. Trends in Biotechnology, 21(1), 45-52. https://doi.org/10.1016/S0167-7799(02)00006-9
    [41] Lee, S. Y., & Kim, H. U. (2015). Systems strategies for developing industrial microbial strains. Nature Biotechnology, 33(10), 1061-1072. https://doi.org/10.1038/nbt.3365
    [42] Lee, T.-M. (1997). Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots cultured in vitro. Plant Science, 122(2), 111-117. https://doi.org/10.1016/S0168-9452(96)04542-6
    [43] Lee, T. H., & Maheshri, N. (2012). A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Molecular Systems Biology, 8, 576. https://doi.org/10.1038/msb.2012.7
    [44] Li, G., Huang, D., Wang, L., & Deng, Y. (2021). Highly efficient whole-cell biosynthesis of putrescine by recombinant Escherichia coli. Biochemical Engineering Journal, 166. https://doi.org/10.1016/j.bej.2020.107859
    [45] Lin, B., & Tao, Y. (2017). Whole-cell biocatalysts by design. Microbial Cell Factories, 16(1), 106. https://doi.org/10.1186/s12934-017-0724-7
    [46] Lin, B.-X., Zhang, Z.-J., Liu, W.-F., Dong, Z.-Y., & Tao, Y. (2013). Enhanced production of  N-acetyl-d-neuraminic acid by multi-approach whole-cell biocatalyst. Applied Microbiology and Biotechnology, 97(11), 4775-4784. https://doi.org/10.1007/s00253-013-4754-8
    [47] Liu, P., Collie, N. D., Chary, S., Jing, Y., & Zhang, H. (2008). Spatial learning results in elevated agmatine levels in the rat brain. Hippocampus, 18(11), 1094-1098. https://doi.org/10.1002/hipo.20482
    [48] Losen, M., Frölich, B., Pohl, M., & Büchs, J. (2004). Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnology Progress, 20(4), 1062-1068. https://doi.org/10.1021/bp034282t
    [49] Lu, J., Cheng, F., Huang, Y., & Bie, Z. (2022). Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating Arginine Decarboxylase to Increase Putrescine Biosynthesis. Frontiers in plant science, 12, 812396-812396. https://doi.org/10.3389/fpls.2021.812396
    [50] McAuliffe, J. C. (2012). Industrial Enzymes and Biocatalysis. In J. A. Kent (Ed.), Handbook of Industrial Chemistry and Biotechnology (pp. 1183-1227). Springer US. https://doi.org/10.1007/978-1-4614-4259-2_31
    [51] Meiswinkel, T. M., Gopinath, V., Lindner, S. N., Nampoothiri, K. M., & Wendisch, V. F. (2013). Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microbial Biotechnology, 6(2), 131-140. https://doi.org/10.1111/1751-7915.12001
    [52] Moon, Y.-M., Yang, S. Y., Choi, T. R., Jung, H.-R., Song, H.-S., Han, Y. h., Park, H. Y., Bhatia, S. K., Gurav, R., Park, K., Kim, J.-S., & Yang, Y.-H. (2019). Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5′-phosphate and ATP. Enzyme and Microbial Technology, 127, 58-64. https://doi.org/10.1016/j.enzmictec.2019.04.010
    [53] Moore, R. C., & Boyle, S. M. (1990). Nucleotide sequence and analysis of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. Journal of Bacteriology, 172(8), 4631-4640. https://doi.org/10.1128/jb.172.8.4631-4640.1990
    [54] Morris, D. R., & Koffron, K. L. (1969). Putrescine Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 244(22), 6094-6099. https://doi.org/10.1016/s0021-9258(18)63510-0
    [55] Morris, D. R., & Pardee, A. B. (1966). Multiple Pathways of Putrescine Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 241(13), 3129-3135. https://doi.org/10.1016/s0021-9258(18)96507-5
    [56] Mueckler, M., & Thorens, B. (2013). The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine, 34(2), 121-138. https://doi.org/10.1016/j.mam.2012.07.001
    [57] Muñoz-Gutiérrez, I., Moss-Acosta, C., Trujillo-Martinez, B., Gosset, G., & Martinez, A. (2014). Ag43-mediated display of a thermostable β-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures. Microbial Cell Factories, 13(1), 106. https://doi.org/10.1186/s12934-014-0106-3
    [58] Nakada, Y., & Itoh, Y. (2003). Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology (Reading), 149(Pt 3), 707-714. https://doi.org/10.1099/mic.0.26009-0
    [59] Nguyen, A. Q., Schneider, J., Reddy, G. K., & Wendisch, V. F. (2015). Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum. Metabolites, 5(2), 211-231. https://doi.org/10.3390/metabo5020211
    [60] Nguyen, L. T., & Lee, E. Y. (2019). Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. Biotechnology for Biofuels, 12, Article 147. https://doi.org/10.1186/s13068-019-1490-z
    [61] Noh, M., Yoo, S. M., Kim, W. J., & Lee, S. Y. (2017). Gene Expression Knockdown by Modulating Synthetic Small RNA Expression in Escherichia coli. Cell Systems, 5(4), 418-426.e414. https://doi.org/10.1016/j.cels.2017.08.016
    [62] Qi, X., Wang, W. F., Wang, J., Yang, J. L., & Shi, Y. P. (2018). Highly selective colorimetric detection of putrescine in fish products using o-phthalaldehyde derivatization reaction. Food Chemistry, 259, 245-250. https://doi.org/10.1016/j.foodchem.2018.03.131
    [63] Qian, Z. G., Xia, X. X., & Lee, S. Y. (2009). Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnology Bioengineering, 104(4), 651-662. https://doi.org/10.1002/bit.22502
    [64] Quinet, M., Ndayiragije, A., Lefèvre, I., Lambillotte, B., Dupont-Gillain, C. C., & Lutts, S. (2010). Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. Journal of Experimental Botany, 61(10), 2719-2733. https://doi.org/10.1093/jxb/erq118
    [65] Ramesh, B., Sendra, V. G., Cirino, P. C., & Varadarajan, N. (2012). Single-cell Characterization of Autotransporter-mediated Escherichia coli Surface Display of Disulfide Bond-containing Proteins*. Journal of Biological Chemistry, 287(46), 38580-38589. https://doi.org/10.1074/jbc.M112.388199
    [66] Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10), 1653-1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006
    [67] Rossi, F. R., Marina, M., & Pieckenstain, F. L. (2015). Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. Plant Biology, 17(4), 831-839. https://doi.org/10.1111/plb.12289
    [68] Rutherford, N., & Mourez, M. (2006). Surface display of proteins by Gram-negative bacterial autotransporters. Microbial Cell Factories, 5(1), 22. https://doi.org/10.1186/1475-2859-5-22
    [69] Sanders, J., Scott, E., Weusthuis, R., & Mooibroek, H. (2007). Bio-refinery as the bio-inspired process to bulk chemicals. Macromolecular Bioscience 7(2), 105-117. https://doi.org/10.1002/mabi.200600223
    [70] Satishchandran, C., & Boyle, S. M. (1986). Purification and properties of agmatine ureohydrolyase, a putrescine biosynthetic enzyme in Escherichia coli. Journal of Bacteriology, 165(3), 843-848. https://doi.org/10.1128/jb.165.3.843-848.1986
    [71] Schneider, J., Eberhardt, D., & Wendisch, V. F. (2012). Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Applied Microbiology and Biotechnology, 95(1), 169-178. https://doi.org/10.1007/s00253-012-3956-9
    [72] Schneider, J., & Wendisch, V. F. (2010). Putrescine production by engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 88(4), 859-868. https://doi.org/10.1007/s00253-010-2778-x
    [73] Schwaiger, K. N., Voit, A., Dobiasova, H., Luley, C., Wiltschi, B., & Nidetzky, B. (2020). Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose. Biotechnology Journal, 15(11), e2000063. https://doi.org/10.1002/biot.202000063
    [74] Shaibe, E., Metzer, E., & Halpern, Y. S. (1985). Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. Journal of Bacteriology, 163(3), 933-937. https://doi.org/10.1128/jb.163.3.933-937.1985
    [75] Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., & Kondo, A. (2004). Direct Production of Ethanol from Raw Corn Starch via Fermentation by Use of a Novel Surface-Engineered Yeast Strain Codisplaying Glucoamylase and Amylase. Applied and Environmental Microbiology, 70(8), 5037-5040. https://doi.org/doi:10.1128/AEM.70.8.5037-5040.2004
    [76] Song, J., & Tachibana, S. (2007). Loss of viability of tomato pollen during long-term dry storage is associated with reduced capacity for translating polyamine biosynthetic enzyme genes after rehydration. Journal of Experimental Botany, 58(15-16), 4235-4244. https://doi.org/10.1093/jxb/erm280
    [77] Song, J., Zhou, C., Liu, R., Wu, X., Wu, D., Hu, X., & Ding, Y. (2010). Expression and purification of recombinant arginine decarboxylase (speA) from Escherichia coli. Molecular Biology Reports, 37(4), 1823-1829. https://doi.org/10.1007/s11033-009-9617-0
    [78] Song, Y., Diao, Q., & Qi, H. (2014). Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems. Acta Physiologiae Plantarum, 36(11), 3013-3027. https://doi.org/10.1007/s11738-014-1672-z
    [79] Speciality materials to the fore at DSM. (2003). Plastics, Additives and Compounding, 5(6), 48-50. https://doi.org/10.1016/s1464-391x(03)00052-7
    [80] Spierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., Albrecht, S., Herrmann, C., & Endres, H.-J. (2018). Bio-based plastics - A review of environmental, social and economic impact assessments. Journal of Cleaner Production, 185, 476-491. https://doi.org/10.1016/j.jclepro.2018.03.014
    [81] Srinivasan, P., & Smolke, C. D. (2019). Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nature Communications, 10(1), 3634. https://doi.org/10.1038/s41467-019-11588-w
    [82] Straathof, A. J. J. (2014). Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chemical Reviews, 114(3), 1871-1908. https://doi.org/10.1021/cr400309c
    [83] Subczynski, W. K., Hyde, J. S., & Kusumi, A. (1989). Oxygen permeability of phosphatidylcholine--cholesterol membranes. Proceedings of the National Academy of Sciences of the United States of America, 86(12), 4474-4478. https://doi.org/10.1073/pnas.86.12.4474
    [84] Sun, X., Song, W., & Liu, L. (2015). Enzymatic production of agmatine by recombinant arginine decarboxylase. Journal of Molecular Catalysis B: Enzymatic, 121, 1-8. https://doi.org/10.1016/j.molcatb.2015.06.008
    [85] Tachibana, S., Watanabe, K., & Konishi, M. (2019). Estimating effects of yeast extract compositions on Escherichia coli growth by a metabolomics approach. Journal of Bioscience and Bioengineering, 128(4), 468-474. https://doi.org/10.1016/j.jbiosc.2019.03.012
    [86] Tang, W., & Newton, R. J. (2005). Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Reports, 24(10), 581-589. https://doi.org/10.1007/s00299-005-0021-5
    [87] Tao, F., Zhang, Y., Ma, C., & Xu, P. (2011). One-pot bio-synthesis: N-acetyl-d-neuraminic acid production by a powerful engineered whole-cell catalyst. Scientific Reports, 1(1), 142. https://doi.org/10.1038/srep00142
    [88] Tarenghi, E., Carré, M., & Martin-Tanguy, J. (1995). Effects of inhibitors of polyamine biosynthesis and of polyamines on strawberry microcutting growth and development. Plant Cell, Tissue and Organ Culture, 42(1), 47-55. https://doi.org/10.1007/BF00037681
    [89] Thongbhubate, K., Irie, K., Sakai, Y., Itoh, A., & Suzuki, H. (2021). Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12. AMB Express, 11(1), 168. https://doi.org/10.1186/s13568-021-01330-5
    [90] Tilay, A., Bule, M., & Annapure, U. (2010). Production of Biovanillin by One-Step Biotransformation Using Fungus Pycnoporous cinnabarinus. Journal of Agricultural and Food Chemistry, 58(7), 4401-4405. https://doi.org/10.1021/jf904141u
    [91] Tufvesson, P., Lima-Ramos, J., Nordblad, M., & Woodley, J. M. (2011). Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes. Organic Process Research & Development, 15(1), 266-274. https://doi.org/10.1021/op1002165
    [92] Urano, K., Yoshiba, Y., Nanjo, T., Ito, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2004). Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 313(2), 369-375. https://doi.org/10.1016/j.bbrc.2003.11.119
    [93] van Bloois, E., Winter, R. T., Kolmar, H., & Fraaije, M. W. (2011). Decorating microbes: surface display of proteins on Escherichia coli. Trends in Biotechnology, 29(2), 79-86. https://doi.org/10.1016/j.tibtech.2010.11.003
    [94] van den Berg, B. (2010). Crystal structure of a full-length autotransporter. Journal of Molecular Biology, 396(3), 627-633. https://doi.org/10.1016/j.jmb.2009.12.061
    [95] van Ulsen, P., Rahman, S. u., Jong, W. S. P., Daleke-Schermerhorn, M. H., & Luirink, J. (2014). Type V secretion: From biogenesis to biotechnology. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(8), 1592-1611. https://doi.org/10.1016/j.bbamcr.2013.11.006
    [96] Wachtmeister, J., & Rother, D. (2016). Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology, 42, 169-177. https://doi.org/10.1016/j.copbio.2016.05.005
    [97] Walter, A., & Gutknecht, J. (1986). Permeability of small nonelectrolytes through lipid bilayer membranes. The Journal of Membrane Biology, 90(3), 207-217. https://doi.org/10.1007/BF01870127
    [98] Wang, Z., Luo, Z., Yan, C., & Xing, B. (2017). Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach. Water Research, 118, 167-176. https://doi.org/10.1016/j.watres.2017.04.036
    [99] Wang, L., Li, G., Deng, Y., & Kelly, R. M. (2020). Diamine Biosynthesis: Research Progress and Application Prospects. Applied and Environmental Microbiology, 86(23). https://doi.org/doi:10.1128/AEM.01972-20
    [100] Wu, S., & Li, Z. (2018). Whole-Cell Cascade Biotransformations for One-Pot Multistep Organic Synthesis. ChemCatChem, 10(10), 2164-2178. https://doi.org/10.1002/cctc.201701669
    [101] Wu, W. H., & Morris, D. R. (1973). Biosynthetic Arginine Decarboxylase from Escherichia coli. Journal of Biological Chemistry, 248(5), 1687-1695. https://doi.org/10.1016/s0021-9258(19)44245-2
    [102] Xue, C., Hsu, K.-M., Ting, W.-W., Huang, S.-F., Lin, H.-Y., Li, S.-F., Chang, J.-S., & Ng, I. S. (2020). Efficient biotransformation of l-lysine into cadaverine by strengthening pyridoxal 5’-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochemical Engineering Journal, 161. https://doi.org/10.1016/j.bej.2020.107659
    [103] Xue, C., Yu, T.-H., & Ng, I. S. (2021). Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. Journal of the Taiwan Institute of Chemical Engineers, 120, 49-58. https://doi.org/10.1016/j.jtice.2021.03.017
    [104] Xue, C., Yi, Y. C., & Ng, I. S. (2021). Migration of glutamate decarboxylase by cold treatment on whole-cell biocatalyst triggered activity for 4-aminobutyric acid production in engineering Escherichia coli. International Journal of Biological Macromolecules, 190, 113-119. https://doi.org/10.1016/j.ijbiomac.2021.08.166
    [105] Yamada, R., Yamakawa, S.-i., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2011). Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme and Microbial Technology, 48(4), 393-396. https://doi.org/10.1016/j.enzmictec.2011.01.002
    [106] Yang, F., Xu, J., Zhu, Y., Wang, Y., Xu, M., & Rao, Z. (2022). High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase. Microbial Cell Factories, 21(1), 16. https://doi.org/10.1186/s12934-022-01742-3
    [107] Zeng, H., & Guan, Z. (2011). Direct Synthesis of Polyamides via Catalytic Dehydrogenation of Diols and Diamines. Journal of the American Chemical Society, 133(5), 1159-1161. https://doi.org/10.1021/ja106958s
    [108] Zhang, J., Witholt, B., & Li, Z. (2006). Coupling of permeabilized microorganisms for efficient enantioselective reduction of ketone with cofactor recycling. Chemical Communications(4), 398-400. https://doi.org/10.1039/B515721H
    [109] Zhu, X., Wang, L., Yang, R., Han, Y., Hao, J., Liu, C., & Fan, S. (2019). Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Horticulture, Environment, and Biotechnology, 60(4), 479-490. https://doi.org/10.1007/s13580-019-00151-7

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE