| 研究生: |
楊宗穎 Yang, Zong-Ying |
|---|---|
| 論文名稱: |
膽固醇效應對雙鏈分子雙層膜之特性的影響:小角度X光散射與磷-31核磁共振研究 Small Angle X-Ray Scattering and 31P-NMR Studies of Cholesterol Effects on the Characteristics of Dialkyl Chain Bilayers |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 膽固醇效應 、陰陽離子界面活性劑 、小角度X光散射 、脂質體 、磷31-核磁共振 、層數 |
| 外文關鍵詞: | liposomes, ion pair amphiphile, IPA, small angle X-ray scattering, SAXS, 31P-NMR, lamellarity, cholesterol effect |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要探討膽固醇的添加對於雙鏈分子所構成之雙層膜的相行為與其特性的影響,採用小角度X光散射(Small Angle X-Ray Scattering, SAXS)以及磷31-核磁共振(31P-NMR)分別進行DTMA-DS (C12-C12)及DPPC (C16-C16)之雙層膜特性研究。
在DTMA-DS系統中,可以利用SAXS確認到層狀結構的形成,再進行膽固醇相反效應的探討。膽固醇的添加會使雙層膜相態呈現液晶有序相,故在凝膠相中的膽固醇添加,會使相態由原先單相凝膠相變成兩相共存再轉變為單一存在之液晶有序相,但在液晶相中的膽固醇添加,則因液晶相及液晶有序相二者流動性及結構相似,以致無法辨別。另外膽固醇相反效應皆會使雙層膜厚度增加。
在DPPC脂質體系統中,膽固醇的添加有添加穩定性的作用,此外在膽固醇濃度達20mol%後,隨著膽固醇濃度上升,除介面電位呈現下降趨勢外,粒徑、層數、接收光強度皆隨之上升。
This study mainly explores the effect of cholesterol on the phase behavior and characteristics of the bilayer membrane. It is composed of dialkyl chain molecules. By using small angle X-ray scattering (SAXS) and 31P-NMR, the bilayer characteristics of DTMA-DS (C12-C12) and DPPC (C16-C16) can be studied respectively.
In the DTMA-DS system, the formation of lamellar structure is confirmed by SAXS, then the opposite effect of cholesterol can be discussed. The addition of cholesterol would cause that the bilayer phase turn into liquid-ordered phase (Lo). Therefore, in gel phase (Lb), the disordering effect of cholesterol leads to the transformation on phase behavior which changes from the original gel phase (Lb) into two-phase coexistence (Lb+Lo) and then becomes a single phase, liquid-ordered phase(Lo). However, in liquid crystalline phase(La), because of the similar fluidity and structure between liquid crystalline phase(La) and liquid-ordered phase(Lo) so that the condensing effect of cholesterol doesn’t work effectively. In this case, SAXS can’t be used to distinguish the structural difference between the two phases (La and Lo) and identify. In addition, the opposite effect of cholesterol would both increase the bilayer thickness.
In the DPPC liposome system, the addition of cholesterol has the ability to enhance the stability of vesicles formation. In addition, when the cholesterol concentration is higher than 20mole%, with increasing cholesterol amounts, except zeta potential shows the decreased trend, the initial size, lamellarity, and the derived count rate all show increased trend.
[1] C. Tondre, C. Caillet, Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis, Advances in Colloid and Interface Science, 2001, 93, 115-134.
[2] A. Jesorka, O. Orwar, Liposomes: technologies and analytical applications, Annual Review of Analytical Chemistry 2008, 1, 801-832.
[3] R.R.C. New, Liposomes: a practical approach, IRL Press at Oxford University Press, 1990.
[4] 陳炳宏, 馮思慎, 微脂粒在藥物輸送的應用, 2000.
[5] D.D. Lasic, Novel applications of liposomes, Trends in Biotechnology, 1998, 16, 307-321.
[6] I. Ahmad, M. Longenecker, J. Samuel, T.M. Allen, Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice, Cancer Research, 1993, 53, 1484-1488.
[7] P.P. Karmali, A. Chaudhuri, Cationic liposomes as non‐viral carriers of gene medicines: resolved issues, open questions, and future promises, Medicinal Research Reviews, 2007, 27, 696-722.
[8] V. Deepthi, A. Kavitha, Liposomal drug delivery system-A review, RGUHS Journal of Pharmaceutical Sciences, 2014, 4, 47-56.
[9] O.G. Mouritsen, Lipids, curvature, and nano‐medicine, European Journal of Lipid Science and Technology, 2011, 113, 1174-1187.
[10] R.K. Subedi, S.Y. Oh, M.K. Chun, H.K. Choi, Recent advances in transdermal drug delivery, Archives of Pharmacal Research, 2010, 33, 339-351.
[11] A. Himanshu, P. Sitasharan, A. Singhai, Liposomes as drug carriers, International Journal of Pharmacy and Life Sciences, 2011, 2, 945-951.
[12] S. Bhattacharya, S. Haldar, Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1467, 39-53.
[13] M.J. Blandamer, B. Briggs, P.M. Cullis, B.J. Rawlings, J.B. Engberts, Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC, Physical Chemistry Chemical Physics, 2003, 5, 5309-5312.
[14] Y.C. Chung, S.L. Regen, Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants, Langmuir, 1993, 9, 1937-1939.
[15] E.W. Kaler, A.K. Murthy, B.E. Rodriguez, J. Zasadzinski, Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science, 1989, 245, 1371-1374.
[16] E. Marques, O. Regev, A. Khan, B. Lindman, Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects, Advances in Colloid and Interface Science, 2003, 100, 83-104.
[17] C. Chien, S. Yeh, Y. Yang, C. Chang, J. Maa, Formation and encapsulation of catanionic vesicles, Journal of the Chinese Colloid and Interface Society, 2002, 24, 31-45.
[18] S.J. Yeh, Y.M. Yang, C.H. Chang, Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles, Langmuir, 2005, 21, 6179-6184.
[19] E. Soussan, S. Cassel, M. Blanzat, I. Rico‐Lattes, Drug delivery by soft matter: matrix and vesicular carriers, Angewandte Chemie International Edition, 2009, 48, 274-288.
[20] K.C. Wu, Z.L. Huang, Y.M. Yang, C.H. Chang, T.H. Chou, Enhancement of catansome formation by means of cosolvent effect: semi-spontaneous preparation method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 599-607.
[21] 黃鉦琳, 帶電陰陽離子液胞的形成及其膠化之研究, 成功大學化學工程學系碩士學位論文, 2007.
[22] 柯政遠, 乙醇體及陰陽體的製備及其包覆/釋放行為之探討, 成功大學化學工程學系碩士學位論文, 2008.
[23] 劉育姍, 陰陽離子液胞包覆維他命 E 醋酸酯之行為探討, 成功大學化學工程學系碩士學位論文, 2011.
[24] Y.M. Yang, K.C. Wu, Z.L. Huang, C.H. Chang, On the stability of liposomes and catansomes in aqueous alcohol solutions, Langmuir, 2008, 24, 1695-1700.
[25] T. Bramer, M. Paulsson, K. Edwards, K. Edsman, Catanionic drug–surfactant mixtures: phase behavior and sustained release from gels, Pharmaceutical Research, 2003, 20, 1661-1667.
[26] A.S.A. Lila, S. Kizuki, Y. Doi, T. Suzuki, T. Ishida, H. Kiwada, Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model, Journal of Controlled Release, 2009, 137, 8-14.
[27] H. Fukuda, K. Kawata, H. Okuda, S.L. Regen, Bilayer-forming ion pair amphiphiles from single-chain surfactants, Journal of the American Chemical Society, 1990, 112, 1635-1637.
[28] J.B. Huang, G.X. Zhao, Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant, Colloid and Polymer Science, 1995, 273, 156-164.
[29] 徐立銘, 陰陽離子液胞包覆行為之探討, 成功大學化學工程學系碩士學位論文, 2002.
[30] 游文月, 共溶劑促進陰陽離子液胞自發性形成之研究, 成功大學化學工程學系碩士學位論文, 2004.
[31] J.N. Israelachvili, Intermolecular and surface forces, Academic Press, 2011.
[32] E. Feitosa, J. Jansson, B. Lindman, The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles, Chemistry and Physics of Lipids, 2006, 142, 128-132.
[33] 李威漢, 陰陽離子界面活性劑的製備及其相轉移行為的熱卡分析, 成功大學化學工程學系碩士學位論文, 2010.
[34] D.A. Mannock, R.N. Lewis, R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biophysical Journal, 2006, 91, 3327-3340.
[35] W. Stillwell, T. Dallman, A.C. Dumaual, F.T. Crump, L.J. Jenski, Cholesterol versus α-tocopherol: Effects on properties of bilayers made from heteroacid phosphatidylcholines, Biochemistry, 1996, 35, 13353-13362.
[36] R. Malcolmson, J. Higinbotham, P. Beswick, P. Privat, L. Saunier, DSC of DMPC liposomes containing low concentrations of cholesteryl esters or cholesterol, Journal of Membrane Science, 1997, 123, 243-253.
[37] T.P. McMullen, R.N. Lewis, R.N. McElhaney, Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes, Biophysical Journal, 2000, 79, 2056-2065.
[38] G. El Maghraby, A.C. Williams, B. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, International Journal of Pharmaceutics, 2004, 276, 143-161.
[39] K.K. Halling, J.P. Slotte, Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004, 1664, 161-171.
[40] L. Zhao, S.S. Feng, N. Kocherginsky, I. Kostetski, DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane, International Journal of Pharmaceutics, 2007, 338, 258-266.
[41] R. Krivanek, L. Okoro, R. Winter, Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study, Biophysical Journal, 2008, 94, 3538-3548.
[42] D.A. Mannock, M.Y. Lee, R.N. Lewis, R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778, 2191-2202.
[43] T.P. McMullen, R.N. Lewis, R.N. McElhaney, Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788, 345-357.
[44] D.A. Mannock, R.N. Lewis, R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2010, 1798, 376-388.
[45] M. Lönnfors, O. Engberg, B.R. Peterson, J.P. Slotte, Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes, Langmuir, 2011, 28, 648-655.
[46] C. Silva, F.J. Aranda, A. Ortiz, V. Martínez, M. Carvajal, J.A. Teruel, Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach, Journal of Colloid and Interface Science, 2011, 358, 192-201.
[47] K.J. Fritzsching, J. Kim, G.P. Holland, Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13 C solid-state NMR, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828, 1889-1898.
[48] M.G. Benesch, R.N. McElhaney, A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014, 1838, 1941-1949.
[49] Y. Konno, N. Naito, A. Yoshimura, K. Aramaki, A study on the formation of liquid ordered phase in lysophospholipid/cholesterol/1, 3-butanediol/water and lysophospholipid/ceramide/1, 3-butanediol/water systems, Journal of Oleo Science, 2014, 63, 823-828.
[50] M.R. Krause, M. Wang, L. Mydock-McGrane, D.F. Covey, E. Tejada, P.F. Almeida, S.L. Regen, Eliminating the roughness in cholesterol’s β-face: does it matter?, Langmuir, 2014, 30, 12114-12118.
[51] M.G. Benesch, R.N. Lewis, R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Chemistry and Physics of Lipids, 2015, 191, 123-135.
[52] M.G. Benesch, R.N. Lewis, D.A. Mannock, R.N. McElhaney, A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs, Chemistry and Physics of Lipids, 2015, 187, 34-49.
[53] K. Aramaki, Y. Watanabe, J. Takahashi, Y. Tsuji, A. Ogata, Y. Konno, Charge boosting effect of cholesterol on cationic liposomes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 732-738.
[54] D.H. Wolfe, L.J. Lis, O. Kucuk, M.P. Westerman, B.A. Cunningham, S.B. Qadri, W. Bras, P.J. Quinn, Phase transitions between ripple structures in hydrated phosphatidylcholine-cholesterol multilamellar assemblies, Physical Review Letters 1992, 68, 1085-1088.
[55] X. Wang, P.J. Quinn, The structure and phase behaviour of alpha-tocopherol-rich domains in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, Biochimie, 2006, 88, 1883-1888.
[56] L. Chen, Z. Yu, P.J. Quinn, The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study, Biochim Biophys Acta, 2007, 1768, 2873-2881.
[57] H.W. Meyert, K. Semmler, P.J. Quinn, The effect of sterols on structures formed in the gel/subgel phase state of dipalmitoylphosphatidylcholine bilayers, Molecular Membrane Biology, 2009, 14, 187-193.
[58] A. Ivankin, I. Kuzmenko, D. Gidalevitz, Cholesterol-phospholipid interactions: new insights from surface X-ray scattering data, Physical Review Letters, 2010, 104, 108101(4).
[59] D. Ntountaniotis, G. Mali, S.G. Grdadolnik, M. Halabalaki, A.L. Skaltsounis, C. Potamitis, E. Siapi, P. Chatzigeorgiou, M. Rappolt, T. Mavromoustakos, Thermal, dynamic and structural properties of drug AT1 antagonist olmesartan in lipid bilayers, Biochim Biophys Acta, 2011, 1808, 2995-3006.
[60] J. Prades, O. Vogler, R. Alemany, M. Gomez-Florit, S.S. Funari, V. Ruiz-Gutierrez, F. Barcelo, Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties, Biochim Biophys Acta, 2011, 1808, 752-760.
[61] C. Bonechi, S. Martini, L. Ciani, S. Lamponi, H. Rebmann, C. Rossi, S. Ristori, Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol, PLoS One, 2012, 7, e41438(11).
[62] R.G. Wu, J.D. Dai, F.G. Wu, X.H. Zhang, W.H. Li, Y.R. Wang, Competitive molecular interaction among paeonol-loaded liposomes: differential scanning calorimetry and synchrotron X-ray diffraction studies, International Journal of Pharmaceutics, 2012, 438, 91-97.
[63] C.L. Armstrong, D. Marquardt, H. Dies, N. Kucerka, Z. Yamani, T.A. Harroun, J. Katsaras, A.C. Shi, M.C. Rheinstadter, The observation of highly ordered domains in membranes with cholesterol, PLoS One, 2013, 8, e66162(10).
[64] E. Drolle, N. Kucerka, M.I. Hoopes, Y. Choi, J. Katsaras, M. Karttunen, Z. Leonenko, Effect of melatonin and cholesterol on the structure of DOPC and DPPC membranes, Biochim Biophys Acta, 2013, 1828, 2247-2254.
[65] S. Lee, D.W. Jeong, M.C. Choi, Vertical order of DPPC multilayer enhanced by cholesterol-induced ripple-to-liquid ordered (Lo) phase transition: Synchrotron X-ray reflectivity study, Current Applied Physics, 2017, 17, 392-397.
[66] T. Ogura, T. Sato, M. Abe, T. Okano, Small angle x-ray scattering and electron spin resonance spectroscopy study on fragrance infused cationic vesicles modeling scent-releasing fabric softeners, Journal of Oleo Science, 2018, 67, 177-186.
[67] K. Aburai, T. Ogura, R. Hyodo, H. Sakai, M. Abe, O. Glatter, Location of cholesterol in liposomes by using small-angle X-ray scattering (SAXS) data and the generalized indirect Fourier transformation (GIFT) method, Journal of Oleo Science, 2013, 62, 913-918.
[68] J. Bouwstra, G. Gooris, W. Bras, H. Talsma, Small angle X-ray scattering: possibilities and limitations in characterization of vesicles, Chemistry and Physics of Lipids, 1993, 64, 83-98.
[69] P.J. Quinn, H. Takahashi, I. Hatta, Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol, Biophysical Journal, 1995, 68, 1374-1382.
[70] C.M. Wu, W. Liou, H.L. Chen, T.L. Lin, U.S. Jeng, Self-assembled structure of the binary complex of DNA with cationic lipid, Macromolecules, 2004, 37, 4974-4980.
[71] P.W. Sanderson, L.J. Lis, P.J. Quinn, W.P. Williams, The Hofmeister effect in relation to membrane lipid phase stability, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1991, 1067, 43-50.
[72] X. Wang, P.J. Quinn, Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002, 1564, 66-72.
[73] A.M. Smondyrev, M.L. Berkowitz, Effects of oxygenated sterol on phospholipid bilayer properties: a molecular dynamics simulation, Chemistry and Physics of Lipids, 2001, 112, 31-39.
[74] S. Bhattacharya, S. Haldar, The effects of cholesterol inclusion on the vesicular membranes of cationic lipids, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1996, 1283, 21-30.
[75] T.A. Daly, M. Wang, S.L. Regen, The origin of cholesterol’s condensing effect, Langmuir, 2011, 27, 2159-2161.
[76] M.R. Krause, S. Turkyilmaz, S.L. Regen, Surface occupancy plays a major role in cholesterol’s condensing effect, Langmuir, 2013, 29, 10303-10306.
[77] R. Alenaizi, S. Radiman, I.A. Rahman, F. Mohamed, Zwitterionic betaine transition from micelles to vesicles induced by cholesterol, Journal of Molecular Liquids, 2016, 223, 1226-1233.
[78] T.T. Bui, K. Suga, H. Umakoshi, Roles of sterol derivatives in regulating the properties of phospholipid bilayer systems, Langmuir, 2016, 32, 6176-6184.
[79] E. El Khoury, D. Patra, Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes, Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 49-54.
[80] F. Severcan, Ü. Baykal, Ş. Süzer, FTIR studies of vitamin E-cholesterol-DPPC membrane interactions in CH2 region, Fresenius' Journal of Analytical Chemistry, 1996, 355, 415-417.
[81] I. Fournier, J. Barwicz, M. Auger, P. Tancrède, The chain conformational order of ergosterol-or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study, Chemistry and Physics of Lipids, 2008, 151, 41-50.
[82] A.M. Smondyrev, M.L. Berkowitz, Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol, Biophysical Journal, 2001, 80, 1649-1658.
[83] M.L. Berkowitz, Detailed molecular dynamics simulations of model biological membranes containing cholesterol, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788, 86-96.
[84] J. Yang, J. Martí, C. Calero, Pair interactions among ternary DPPC/POPC/cholesterol mixtures in liquid-ordered and liquid-disordered phases, Soft Matter, 2016, 12, 4557-4561.
[85] W.H. Lee, Y.L. Tang, T.C. Chiu, Y.M. Yang, Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers, Journal of Chemical & Engineering Data, 2015, 60, 1119-1125.
[86] W.H. Chang, Y.T. Chuang, C.Y. Yu, C.H. Chang, Y.M. Yang, Effects of sterol-like additives on phase transition behavior of ion-pair amphiphile bilayers, Journal of Oleo Science, 2017, 66, 1229-1238.
[87] 鄭有舜, 韋光華, 李文献, 吳浚銘, 楊仲準, 王進威, 施伯勳, 紀忠義, 吳勝允, 蘇暉家, 高通量寬能帶的同步輻射小角度 X 光散射在奈米結構研究上之應用, 物理雙月刊, 2008, 30, 33-41.
[88] 鄭有舜, X-光小角度散射在軟物質研究上的應用, 物理雙月刊, 2004, 26, 416-424.
[89] 陳信龍, 鄭有舜, 小角度 X 光散射在高分子奈米結構解析之應用, 科儀新知, 2007, 7-17.
[90] A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki, Liposome: classification, preparation, and applications, Nanoscale Research Letters, 2013, 8, 102.
[91] B. Maherani, E. Arab-Tehrany, M. R Mozafari, C. Gaiani, M. Linder, Liposomes: a review of manufacturing techniques and targeting strategies, Current Nanoscience, 2011, 7, 436-452.
[92] A. Hinna, F. Steiniger, S. Hupfeld, P. Stein, J. Kuntsche, M. Brandl, Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters, Journal of Liposome Research, 2016, 26, 11-20.
[93] I. Baeza, C. Wong, R. Mondragón, S. González, M. Ibáñez, N. Farfán, C. Argüello, Transbilayer diffusion of divalent cations into liposomes mediated by lipidic particles of phosphatidate, Journal of Molecular Evolution, 1994, 39, 560-568.
[94] L. Mayer, M. Hope, P. Cullis, A. Janoff, Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1985, 817, 193-196.
[95] L. Mayer, M. Hope, P. Cullis, Vesicles of variable sizes produced by a rapid extrusion procedure, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1986, 858, 161-168.
[96] M. Hope, M. Bally, G. Webb, P. Cullis, Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1985, 812, 55-65.
[97] M. Fröhlich, V. Brecht, R. Peschka-Süss, Parameters influencing the determination of liposome lamellarity by 31 P-NMR, Chemistry and Physics of Lipids, 2001, 109, 103-112.
[98] N. Bloembergen, Proton Relaxation Times in Paramagnetic Solutions, The Journal of Chemical Physics, 1957, 27, 572-573.
[99] 謝佑翎, 乙醇與膽固醇對 DPPC 脂質體雙層膜特性之影響, 成功大學化學工程學系碩士學位論文, 2017.