簡易檢索 / 詳目顯示

研究生: 李昱廷
Li, Yu-Ting
論文名稱: 金奈米粒子之製備及其應用在螢光抑制機制上以進行生醫晶片辨識與感測之研究
Fabrication of Gold Nanoparticles for Chip-based Bio-recognition and Biosensing by Fluorescence Quenching
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 121
中文關鍵詞: 生醫晶片螢光抑制金奈米粒子生物分子
外文關鍵詞: fluorescence quenching, DNA, chip, bio molecular, gold nanoparticle
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      此研究重點在於發展一個快速、簡便的生醫感測晶片,主要是應用在生物樣品的辨識研究上,我們結合了金奈米粒子當受質,因為它具有特殊的光學特性以及能提供較大的接觸表面等性質,我們希望能藉此來提高生物樣品的辨識靈敏度。
      在這個實驗中,我們會先用化學修飾的方法將金奈米粒子單層固定在玻璃上,接著是利用一段有修飾FITC螢光染料的DNA,另一端修飾硫醇基,藉由硫醇基可與金奈米粒子形成共價鍵結 (covalent bond),而使得DNA能固定在金奈米粒子上,這時FITC螢光染料會因為與金奈米粒子距離很近,而產生能量轉移的現象,因此會自行吸附到金奈米粒子的表面上(closed state),以致螢光訊號會因此而被抑制住;當加入另一段互補的DNA時,會因為雜合作用(hybridization)而形成雙股DNA (double stranded),促使FITC螢光染料從金奈米粒子表面釋放出來,螢光訊號也會隨之提昇,我們即可藉由這個訊號變化來辨識DNA之間的作用情形。
      高效率的生醫感測晶片是具有廣大的市場需求,然而如何找出能提昇其靈敏度及應用領域的方法是非常重要的。而由此論文中所談的觀點提供了一種新的檢測方式,如此迅速、簡便的特性將會是未來發展生醫奈米科技的一種趨勢。

    Abstract
      This research is mainly base on developing a simple and convenient biosensing chip. It is used to identify different variety of biology samples. Gold nanoparticle, acting as a substrate, has a special optical characteristic and provides a larger contacting surface; therefore, it is combined with the biosensing chip in order to increase detection sensitivity.
      In this experiment, we use chemical modification method to coat a single layer of gold nanoparticles onto the glass substrate. A piece of DNA that modifies FITC fluorescence on one end and thiol group on the other end is then used. Thiol group can bind with gold nanoparticles forming a covalent bond; consequently, the DNA is stabilized on the glass substrate via gold nanoparticles. Due to the fact that the gold nanoparticle is quite close to the FITC fluorescence, they tend to bind with each other, forming a direct energy transformation. This phenomenon is so called an assembled (closed) state. As a result, the fluorescent signal would fade out from lose of energy of the FITC fluorescence. When a single complementary DNA strand is introduced, a double stranded DNA would form via hybridization. Not only if the fluorescent signal is discharged through the gold nanoparticle, but it has also become a stronger signal. We can then use this advantage in order to recognize DNA interaction.
      In the market, research and development of a high performance biosensing chip is very popular and demanding; therefore, it is very important to find out how to improve its sensitivity and apply the technology to various usages. In this thesis, an outlook is brought up which suggests that a new sensing method with quicker and more convenient advantages would be beneficial to the future!

    目錄 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 表目…錄………………………………………………………………Ⅶ 圖目錄…………………………………………………………………Ⅶ 第一章 序論 1.1 奈米發展背景………………………………………………………………1 1.2 奈米效應…………………………………………………2 1.2.1 表面效應………………………………………………………………3 1.2.2 體積效應………………………………………………………………4 1.2.3 小尺寸效應………………………………………………………………5 1.3 微流體生醫晶片之發展………………………………………………………………7 1.3.1 生醫晶片………………………………………………………………7 1.3.2 微陣列晶片之特點………………………………………………………………8 1.3.3 微陣列晶片之設計與製程………………………………………………………………9 1.4 研究的方向與目的………………………………………………………………10 第二章 金奈米粒子之特性 2.1金屬奈米粒子之表面電漿共振………………………………………………………………13 2.2 金奈米粒子之穩定度………………………………………………………………19 2.2.1 粒子間的吸引力………………………………………………………………20 2.2.2 粒子間的排斥力………………………………………………………………21 2.3製備金奈米粒子之方法比較………………………………………………………………27 2.3.1 白磷還原法………………………………………………………………27 2.3.2 檸檬酸鈉鹽還原法………………………………………………………………28 2.3.3 氫硼化納還原法………………………………………………………………29 2.4金奈米粒子之鑑定………………………………………………………………30 2.5 合成金奈米粒子實驗………………………………………………………………31 2.5.1 藥品與試劑………………………………………………………………31 2.5.2 實驗方法………………………………………………………………31 2.5.3 結果與討論………………………………………………………………33 第三章 金奈米粒子的表面修飾與生化探針的固定 3.1 生物感測技術………………………………………………………………37 3.2 表面電漿共振………………………………………………………………38 3.3 生物探針之製備及其效能之探討………………………………………………………………40 3.3.1藥品與試劑………………………………………………………………40 3.3.2實驗方法………………………………………………………………42 3.3.3結果與討論………………………………………………………………44 第四章 奈米螢光抑制機制之探討 4.1 螢光染料之標示………………………………………………………………48 4.2 螢光抑制機制………………………………………………………………49 4.3 量子產率…………………………………………………50 4.4 實驗部分…………………………………………………53 4.4.1 藥品與試劑………………………………………………………………53 4.4.2 實驗方法………………………………………………………………53 4.4.3 結果與討論………………………………………………………………54 第五章 奈米螢光抑制用於生物分子作用力之感測 5.1 蛋白質之間的親和性作用………………………………………………………………56 5.2 DNA之間的雜合反應………………………………………………………………58 5.3 偵測儀器之架設………………………………………………………………60 5.3.1 光學系統………………………………………………………………60 5.3.2 偵測器…………………………………………………62 5.3.3 數據擷取系統…………………………………………62 5.4 實驗部分…………………………………………………63 5.4.1 藥品與試劑………………………………………………………………63 5.4.2 實驗方法………………………………………………………………65 5.4.3 實驗結果與討論………………………………………………………………66 第六章 總結與未來展望 6.1 總結………………………………………………………72 6.1.1金奈米粒子之製備………………………………………72 6.1.2生物探針之固定………………………………………………………………73 6.1.3金奈米粒子之螢光抑制效能………………………………………………………………73 6.1.4奈米螢光抑制用於生物分子作用力之感測………………………………………………………………74 6.2 未來展望…………………………………………………76 參考文獻………………………………………………………77

    參考文獻:

    1. C.N.Ramachandra Rao,Girdhar U.Kulkarni,P.John Thomas and
    Peter P.Edwards Chem. Soc. Rev.18,27-35 (2000)
    2. 莊萬發,“超微粒子理論應用”,復漢出版社,民國84年4月
    ,台南
    3. G. A. Ozin, Adv. Mater., 4, 612 (1992)
    4. H. J. Fendler, Chem. Rev., 89, 1861(1989)
    5. G. Schimid, “Clusters and Colloids: From Theory to
    Applications”,VCH, (1994)
    6. 黃德歡,“改變世界的奈米技術”,瀛舟出版社,2002年,台北
    7. T. Linnert, P. Mulvaney and A. Henglein, J. Phys. Chem., 97,
    679 (1993)
    8. U. Kreibig and C.V.Z. Fragstein, Phys., 224, 307 (1969)
    9. A. P. Alivisatos, Science, 271, 933 (1996)
    10.M.A.El-sayed, and Z. L. Wang, J. Phys. Chem. B, 102, 6145 (1998)
    11.(a) I. Lisiecki, H. S. Kongehl, K. Weiss, J. Urban and M. P. Pileni, Langmuir, 16, 8802,( 2000) (b) I. Lisiecki, H. S. Kongehl, K. Weiss, J. Urban and M. P. Pileni, Langmuir , 16, 8807 (2000)
    12.N. Ichinose, Y. Ozaki and S. Kashu, “Superfine Particle
    Technology”, Springer-Verlag., 201-203. (1988)
    13.曾繁根,“生醫檢測的微技術”,科普知識,(2003)
    14.王崇人, “神奇的奈米科學”,科普知識,(2002)
    15.N.Nath, A.Chilkoti, Anal.Chem.74,504-509 (2002)
    16.D.J.Maxwell, J.R.Taylor, S.Nie,J.Am.Chem.Soc.124,9606
    -9612 (2002)
    17.J.C.Weaver, Y.A.Chizmadzhev, Bioelectrochemistry and
    Bioenergtics,41,135 (1996)
    18.S.Link, Z.L.Wang, M.A.El-Sayed, J.Phys.Chem.B,103,3529
    (1999)
    19.P.Mulvaney, Langmuir,12,788 (1996)
    20.M.Giersig, P.Mulvaney, Langmuir,9,3408 (1993)
    21.M.Giersig, P.Mulvaney,J.Phys.Chem.,97,6334 (1993)
    22.K.L.Kelly,E.Coronado,L.L.Zhao,G.C.Schatz, J.Phys.Chem.B. 107,668 (2003)
    23.C.Kittel,“Introduction to Solid State Physics”,7th
    edition, Wiley,New York, (1996)
    24.U.Kreibig, M.Vollmer,“Optical Properties of Metal Cluster”,Vol.25,Springer,Berlin, (1995)
    25.J.H.Robert,“Introduction to Modern Colloid Science”(1993)
    26.H.R.Kruyt,“Collodi Science”,Elsevier Science Publishing Company INC, (1952)
    27.J.G.Robert, R.Robert, Stromberg“Surface and Colloid Science Vol.11”,published by Plenum Press,New York and London.
    28.G.Schimid,“Clusters and Colloids”:Form Theory to Application, VCH: New York (1994)
    29.U.Ciesla, S.Schacht, G.D.Stucky, K.K.Unger, F.Schuth, Angew.Chem.Int.Ed.Engl,35,541 (1996)
    30.H.P.Lin,Y.R.Cheng, C.Y.Mou, Microporous Mater,10,3773 (1998)
    31.D.Zhao, J.Feng, Q.Huo, N.Melosh, G.H.Fredickson, B.F.Chmelka, G.D.Stuky, Science,279,548 (1998)
    32.L.Kokko, K.Sandberg, T.Lovgren, T.Soukka“Anal.Chem.”503,155-162 (2004)
    33.D.C.Harris “Quantitative Chemical Analysis”5th 559-620
    34.S.Jones, J.M. Thornton, Proc. Natl. Acad. Sci. USA.,93, 13-20 (1996)
    35.R.R.Cynthia “生物科技大商機”聯經出版事業公司, (2001)
    36.T.Linda, V.B.Mark, “看基因在說話”凱信出版事業有限公司,(2001)
    37.C.S.Effenhauser, A.Manz, H.M.Widmer, Anal.Chem.,65,
    2637 (1993)
    38.S.C.Jacobson, R.Hergenroeder, A.W.Moore, J.W.Ramsey,
    Anal.Chem.,66, 4127 (1994)
    39.A.H.Liang, N.Chiem, G.Ocvirk, T.Tang, K.Fluri, D.J.
    Harrison, Anal.Chem.,68, 1040 (1996)
    40.G.Ocvirk, T.Tang, D.J.Harrison, Analyst., 123, 1429-1434
    (1998)

    下載圖示 校內:2014-08-17公開
    校外:2015-08-17公開
    QR CODE