| 研究生: |
潘冠伶 Pan, Kuan-Ling |
|---|---|
| 論文名稱: |
液態鋁氫化鈉放氫行為之研究 Dehydrogenation Behavior of Liquid Phase Sodium Alanate |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 儲氫材料 、鋁氫化鈉 、液態 、動力學 、臨場同步輻射X光繞射分析 |
| 外文關鍵詞: | hydrogen storage materials, sodium alanate, liquid phase, kinetics, In-situ synchrotron X-ray diffraction |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為了瞭解液態鋁氫化鈉於整體放氫反應中扮演之角色,首先以熱重分析儀、示差掃描量熱儀觀察鋁氫化鈉放氫溫度,並利用目視觀察與臨場同步輻射X光繞射技術確認NaAlH4(l)的存在。經臨場同步輻射X光繞射分析,可觀察到饅頭峰的現象發生,表示確實有液態鋁氫化鈉的存在,其液化溫度約為180 oC;固態鋁氫化鈉相變成液態而後發生分解之反應式成立。
接著進行低於熔點溫度的TGA持溫實驗觀察是否發生放氫反應,並透過ex-situ XRD來找出分解產物,再藉由臨場同步輻射X光繞射技術進行持溫實驗分析材料長時間低於熔點溫度過程中的結晶結構變化;評估整體放氫性質,包含放氫量、放氫溫度和反應方程式等。
經熱重分析儀分析長時間低於熔點溫度過程中持溫之鋁氫化鈉系統,其反應為固態鋁氫化鈉直接分解放氫。
透過計算固態鋁氫化鈉分解反應之活化能,可得固態鋁氫化鈉分解反應活化能為192 kJ/mole,較文獻所得之118 kJ/mole為高,推測固態鋁氫化鈉之放氫反應需於長時間下持續給予熱能使其克服活化能障礙才能發生,而液態鋁氫化鈉於此放氫反應中則扮演降低反應活化能之角色。
於鋁氫化鈉系統中分別存在兩種不同反應途徑,其反應式如下:
(1) NaAlH4(s) → NaAlH4(l)
NaAlH4(l) → 1/3Na3AlH6(s) + 2/3Al(s) + H2(g)
1/3Na3AlH6(s) → NaH(s) + 1/3Al(s) + 1/2H2(g)
(2) NaAlH4(s) → 1/3Na3AlH6(s) + 2/3Al(s) + H2(g)
1/3Na3AlH6(s) → NaH(s) + 1/3Al(s) + 1/2H2(g)
The dehydrogenation behavior of liquid phase sodium alanate was investigated by using high-pressure thermal gravimetric analysis (HPTGA) and in-situ synchrotron X-ray diffraction technique.
In-situ synchrotron XRD analysis revealed the existence of liquid phase NaAlH4, and the decomposition of NaAlH4 is followed by the phase transition reaction.
The isothermal results using TGA and XRD showed that both reactions are established. The reactions of NaAlH4 heating below melting temperature for long time will be solid state NaAlH4 decompose to Na3AlH6 and Al directly.
The dehydrogenation behavior of solid state NaAlH4 requires higher activation energy to drive the reaction. NaAlH4(l) can enhance the desorption kinetics.
The decomposition reaction of NaAlH4 can be described as following:
(1) NaAlH4(s) → NaAlH4(l)
NaAlH4(l) → 1/3Na3AlH6(s) + 2/3Al(s) + H2(g)
1/3Na3AlH6(s) → NaH(s) + 1/3Al(s) + 1/2H2(g)
(2) NaAlH4(s) → 1/3Na3AlH6(s) + 2/3Al(s) + H2(g)
1/3Na3AlH6(s) → NaH(s) + 1/3Al(s) + 1/2H2(g)
[1] T. Adler, L. Wargelin, L. P. Kostyniuk, C. Kavalec, and G. Occhiuzzo, "Incentives for alternate fuel vehicles: A large-scale stated preference experiment," in 10th International Conference on Travel Behaviour Research, 2003, pp. 10-15.
[2] J. A. Turner, "A Realizable Renewable Energy Future," Science, vol. 285, pp. 687-689, July 30, 1999.
[3] W. McDowall and M. Eames, "Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures," International Journal of Hydrogen Energy, vol. 32, pp. 4611-4626, 2007.
[4] T. I. Sigfusson, "Pathways to hydrogen as an energy carrier," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 1025-1042, 2007.
[5] B. D. Solomon and A. Banerjee, "A global survey of hydrogen energy research, development and policy," Energy Policy, vol. 34, pp. 781-792, 2006.
[6] B. Johnston, M. C. Mayo, and A. Khare, "Hydrogen: the energy source for the 21st century," Technovation, vol. 25, pp. 569-585, 2005.
[7] T. Nakamura, "Hydrogen production from water utilizing solar heat at high temperatures," Solar Energy, vol. 19, pp. 467-475, 1977.
[8] G. Marbán and T. Valdés-Solís, "Towards the hydrogen economy?," International Journal of Hydrogen Energy, vol. 32, pp. 1625-1637, 2007.
[9] L. Schlapbach and A. Zuttel, "Hydrogen-storage materials for mobile applications," Nature, vol. 414, pp. 353-358, 2001.
[10] M. Ball and M. Wietschel, The Hydrogen Economy: Opportunities and Challenges: Cambridge University Press, 2010.
[11] S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, "The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements," Catalysis Today, vol. 120, pp. 246-256, 2007.
[12] M. H. Maack and J. B. Skulason, "Implementing the hydrogen economy," Journal of Cleaner Production, vol. 14, pp. 52-64, 006.
[13] E. C. Ashby and P. Kobetz, "The Direct Synthesis of Na3AlH6," Inorganic Chemistry, vol. 5, pp. 1615-1617, 1966.
[14] T. N. Dymova, Y. M. Dergachev, V. A. Sokolov, and N. A. Grechanaya, "Dissociation pressure of sodium tetrahydroaluminate and trisodium hexahydroaluminate," Dokl. Akad. Nauk SSSR, pp. 591-592, 1975.
[15] P. Claudy, B. Bonnetot, G. Chahine, and J. M. Letoffe, "Etude du comportement thermique du tetrahydroaluminate de sodium NaAlH4 et de l'hexahydroaluminate de sodium Na3AlH6 DE 298 A 600 K," Thermochimica Acta, vol. 38, pp. 75-88, 1980.
[16] A. Züttel, "Hydrogen storage methods," Naturwissenschaften, vol. 91, pp. 157-172, 2004.
[17] D. Cahen and I. Lubomirsky, "Energy, the global challenge, and materials," Materials Today, vol. 11, pp. 16-20, 2008.
[18] A. Zuttel, A. Remhof, A. Borgschulte, and O. Friedrichs, "Hydrogen: the future energy carrier," Philos Trans A Math Phys Eng Sci, vol. 368, pp. 3329-3342, 2010.
[19] W. I. F. David, "Effective hydrogen storage: a strategic chemistry challenge," Faraday Discussions, vol. 151, pp. 399-414, 2011.
[20] Z. Chuanxiang and L. Shaohui, "Stresses controllable analysis and optimal design of unique high pressure vessel applied in hydrogen charge station," International Journal of Hydrogen Energy, vol. 32, pp. 3508-3518, 2007.
[21] R. Chahine and T. K. Bose, "Low-pressure adsorption storage of hydrogen," International Journal of Hydrogen Energy, vol. 19, pp. 161-164, 1994.
[22] U. Eberle, G. Arnold, and R. von Helmolt, "Hydrogen storage in metal–hydrogen systems and their derivatives," Journal of Power Sources, vol. 154, pp. 456-460, 2006.
[23] A. Züttel, "Materials for hydrogen storage," Materials Today, vol. 6, pp. 24-33, 2003.
[24] P. Jena, "Materials for Hydrogen Storage: Past, Present, and Future," The Journal of Physical Chemistry Letters, vol. 2, pp. 206-211, 2011.
[25] D. Mori and K. Hirose, "Recent challenges of hydrogen storage technologies for fuel cell vehicles," International Journal of Hydrogen Energy, vol. 34, pp. 4569-4574, 2009.
[26] K. Hirose, "Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles—now and in the future," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 368, pp. 3365-3377, 2010.
[27] C. Lundin, E., "Hydrogen storage properties and characteristics of rare earth compounds," J. Phys. Colloques, vol. 40, pp. 286-291, 1979.
[28] J. J. Reilly and R. H. Wiswall, "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4," Inorganic Chemistry, vol. 7, pp. 2254-2256, 1968.
[29] J. W. Oh, C. Y. Kim, K. S. Nahm, and K. S. Sim, "The hydriding kinetics of LaNi4.5Al0.5 with hydrogen," Journal of Alloys and Compounds, vol. 278, pp. 270-276, 1998.
[30] S. E. Kulkova, S. V. Eremeev, V. E. Egorushkin, J. S. Kim, and S. Y. Oh, "Hydrogen adsorption on Pd/TiFe (110) surface," Solid State Communications, vol. 126, pp. 405-408, 2003.
[31] D. Chandra, J. Reilly, and R. Chellappa, "Metal hydrides for vehicular applications: The state of the art," JOM, vol. 58, pp. 26-32, 2006.
[32] R. A. Varin, T. Czujko, and Z. S. Wronski, Nanomaterials for Solid State Hydrogen Storage: Springer, 2009.
[33] F. Schuth, B. Bogdanovic, and M. Felderhoff, "Light metal hydrides and complex hydrides for hydrogen storage," Chemical Communications, pp. 2249-2258, 2004.
[34] G. Sandrock and R. C. Bowman Jr, "Gas-based hydride applications: recent progress and future needs," Journal of Alloys and Compounds, vol. 356, pp. 794-799, 2003.
[35] L. George and S. K. Saxena, "Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review," International Journal of Hydrogen Energy, vol. 35, pp. 5454-5470, 2010.
[36] S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, "Complex Hydrides for Hydrogen Storage," Chemical Reviews, vol. 107, pp. 4111-4132, 2007.
[37] M. Fichtner, O. Fuhr, and O. Kircher, "Magnesium alanate—a material for reversible hydrogen storage?," Journal of Alloys and Compounds, vol. 357, pp. 418-422, 2003.
[38] H. Morioka, K. Kakizaki, S.-C. Chung, and A. Yamada, "Reversible hydrogen decomposition of KAlH4," Journal of Alloys and Compounds, vol. 353, pp. 310-314, 2003.
[39] F. Maximilian, F. Olaf, K. Oliver, and R. Jörg, "Small Ti clusters for catalysis of hydrogen exchange in NaAlH 4," Nanotechnology, vol. 14, p. 778, 2003.
[40] B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, and J. Tölle, "Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials," Journal of Alloys and Compounds, vol. 302, pp. 36-58, 2000.
[41] F. A. E and S. Hermann, "Method of making aluminum-containing hydrides," U.S. Patents, 1951.
[42] Z. Ma and M. Y. Chou, "First-principles investigation of sodium and lithium alloyed alanates," Journal of Alloys and Compounds, vol. 479, pp. 678-683, 2009.
[43] J. A. Dilts and E. C. Ashby, "A Study of the Thermal Decomposition of Complex Metal Hydrides," Inorganic Chemistry, vol. 11, pp. 1230-1236, 1972.
[44] A. Andreasen, "Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride," Journal of Alloys and Compounds, vol. 419, pp. 40-44, 2006.
[45] K. J. Gross, S. Guthrie, S. Takara, and G. Thomas, "In-situ X-ray diffraction study of the decomposition of NaAlH4," Journal of Alloys and Compounds, vol. 297, pp. 270-281, 2000.
[46] M. P. Balogh, G. G. Tibbetts, F. E. Pinkerton, G. P. Meisner, and C. H. Olk, "Phase changes and hydrogen release during decomposition of sodium alanates," Journal of Alloys and Compounds, vol. 350, pp. 136-144, 2003.
[47] A. Zaluska, L. Zaluski, and J. Ström-Olsen, "Sodium alanates for reversible hydrogen storage," Journal of Alloys and Compounds, vol. 298, pp. 125-134, 2000.
[48] L. Zaluski, A. Zaluska, and J. Ström-Olsen, "Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis," Journal of alloys and compounds, vol. 290, pp. 71-78, 1999.
[49] B. Bogdanović and M. Schwickardi, "Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials," Journal of Alloys and Compounds, vol. 253, pp. 1-9, 1997.
[50] C. M. Jensen and K. J. Gross, "Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material," Applied Physics A Materials Science & Processing, vol. 72, pp. 213-219, 2001.
[51] T. Dymova and S. Bakum, "On the Thermal Decomposition of Sodium and Potassium Hydridoaluminates," Zh. Neorg. Khim, vol. 14, pp. 3190-3195, 1969.
[52] T. K. Nielsen, M. Polanski, D. Zasada, P. Javadian, F. Besenbacher, J. Bystrzycki, et al., "Improved hydrogen storage kinetics of nanoconfined NaAlH4 catalyzed with TiCl3 nanoparticles," ACS nano, vol. 5, pp. 4056-4064, 2011.
[53] J. Mao, Z. Guo, and H. Liu, "Enhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes," RSC Advances, vol. 2, p. 1569, 2012.
[54] C. Rongeat, I. Llamas-Jansa, S. Doppiu, S. Deledda, A. Borgschulte, L. Schultz, et al., "Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC)," The Journal of Physical Chemistry B, vol. 111, pp. 13301-13306, 2007.
[55] G. Sandrock, K. Gross, G. Thomas, C. Jensen, D. Meeker, and S. Takara, "Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage," Journal of Alloys and compounds, vol. 330, pp. 696-701, 2002.