| 研究生: |
蔡慶鈞 Tsai, Ching-Chun |
|---|---|
| 論文名稱: |
銀奈米粒子與聚2,5-二甲氧苯胺複合材料之合成與物性探討 Synthesis and Characterization of Silver Nanoparticles and Poly(2,5-dimethoxyaniline) Composite |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 奈米粒子 、導電高分子 、複合材料 |
| 外文關鍵詞: | composite, conducting polymer, nanoparticle |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是探討利用硝酸銀為氧化劑,於2,5-二甲氧苯胺及聚電解質(聚乙烯苯磺酸, PSS)下進行導電高分子聚合反應。2,5-二甲氧苯胺經由起始-傳播-終結反應形成高分子,並且伴隨著奈米銀顆粒之生成。本研究分成兩部份進行討論,首先是針對聚2,5-二甲氧苯胺及奈米銀生成機制進行討論。第二部份則是針對聚合條件之影響,討論高分子成長速率及奈米銀顆粒分佈等差異性。
(1)同步聚合PDMA與奈米銀之機制推演及結構鑑定
以硝酸銀與APS兩種氧化劑進行比較,探討不同氧化劑時,導電高分子聚合特性之差異,及奈米粒子的生成情況。in-situ紫外光/可見光光譜儀提供一個簡便的方法,可以觀察導電高分子的聚合過程與銀粒子的生成。光譜圖中顯示PDMA分別在357 nm、443 nm、530 nm和770 nm具有導電性高分子特性吸收峰,且在銀粒子的催化下,加速聚合速率,並且使結構更易轉換成高導電之emeraldine 結構。穿透式電子顯微鏡(TEM)得知PDMA-PSS構成的微反應器之中,銀粒子粒徑分佈約在12 nm之間,且均勻的分佈於高分子結構內(SEM)。化學分析電子光譜(XPS)得知存在有金屬銀,並且存在有奈米銀之情況下,結構較易由amine偏向imine結構,進而提升其導電度。
(2)聚合條件於高分子結構及奈米銀顆粒大小分佈之影響
第二部份,探討在不同的聚合條件,對於導電高分子結構與奈米粒子的影響。利用in-situ紫外光/可見光光譜、傅利葉紅外光光譜(IR)、穿透式電子顯微鏡(TEM)分別探討聚2,5-二甲氧苯胺的結構與銀粒子的尺寸分佈,隨聚合條件之影響。PSS濃度對於複合材料的特性影響最顯著,改變PSS濃度會影響到導電高分子的聚合速率、高分子結構與導電度。總和前兩章的結果,PDMA-PSS構成的微反應器能有效的製備奈米銀粒子。
The main objective of the present investigation is to study the polymerization of PDMA by using AgNO3 as oxidant in a microreactor, comprising of the electronic conductive polymer, poly (2,5-dimethoxyaniline) (PDMA) and a polyelectrolyte, poly (styrene sulfonic acid) (PSS). Poly(2,5-dimethoxyaniline) was polymerized and Ag+ ions was reduced to Ag nanoparticles in the reaction, simultaneously.
First, a novel method for simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) (PDMA) in the existence of poly (styrene sulfonic acid) (PSS) has been demonstrated. In-situ UV-Visible spectroscopy was used to monitor the simultaneous formation of silver nanoparticles and PDMA. The presence of peaks corresponding to PDMA at 357 nm, 443 nm, 530 nm and 770 nm in the in-situ UV-Visible spectra provide evidences for the simultaneous formation of silver nanoparticles and PDMA. The rate of polymerization is very fast by catalyst of silver. Transmission electron microscopy (TEM) and size distribution analysis reveal the presence of spherical silver nanoparticles with an average diameter of 12 nm, and the particles are homogeneous distribution in PDMA-PSS matrix. The analysis of the PDMA-PSS-Ag nanocomposite using X-ray photoelectron spectroscopy (XPS) informs that the in presence of silver nanoparticles makes the interconversion of leucoemeraldine to emeraldine more easily and leads the enhancement of conductivity.
Second, the effect of the condition of polymerization on the structure of composite and the particle size distribution of silver has been studied and compared. The evidences can be obtained by in-situ UV-Visible, FT-IR and TEM. The main influence on the properties PDMA-PSS-Ag is dominated in the concentration of PSS. Further, we offer a simple way to synthesis of silver nanoparticles and conducting polymer simultaneously by using metal ions as oxidant agent and electron rich monomer in the sulfonic group polyelectrolyte.
1.“科學人雜誌”,特刊 第一期 (2003).
2.呂世源,”奈米新世界”,科學發展月刊,359,p 4 (2003).
3.林景正、賴宏仁,”奈米材料與發展趨勢”,工業材料,153,p 95 (1999).
4.陳郁文,”奈米材料在觸媒上的應用”,化工,5,p 21 (1998).
5.C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua, A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).
6.黃黎明,”聚(2,5-二甲氧苯胺)之電致變色及電性研究”,國立成功大學化學系博士論文 (2004).
7.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977).
8.S. Lefrant, L. S. Lichtman, M. Temkin, D. C. Fichten, D. C. Miller, G. E. Whitwell, J. M. Burlich, Solid State Commun., 29, 191 (1979).
9.H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
10.A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
11.A. J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
12.J. H. Schön, A. Dodabalapur, Z. Bao, C. H. Kloc, G. Schenker, B. Batlogg, Nature 410, 189 (2001).
13.A. Berin, Electrical and optical polymer systems, 47 (1998).
14.R. N. McDonald, T. W. Campbell, J. Am. Chem. Soc. 82, 4669 (1960).
15.G. A. Lapitskii, S. M. Makin, A. A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
16.W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle, D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
17.G. Kossmehl, Ber. Bunsenges, Phys. Chem., 83, 417 (1979).
18.L. W. Shacklette, H. Eckhardt, R. R. Chance, R. H. Banghman, J. Chem. Soc. Chem. Commun. 854 (1980).
19.P. Pfluger, O. B. Street, J. Chem. Phys. 80, 544 (1984).
20.A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun. 635 (1979).
21.A. F. Diaz, K. K. Kanazawa, J. I. Castillo, J. A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
22.E. M. Genies, G. Bidan, A. F. Diaz, J. Electroanal. Chem. 149, 101 (1983).
23.R. Jansson, H. Arwin, R. Bjorklund, I. Lundstrom, Thin Solid Films 125, 205 (1980).
24.A. F. Diaz, A. Matninez, K. K. Kanazawa, M. Salmon, J. Electroanal. Chem. 130, 181 (1980).
25.G. Tourillon, F. Garnier, J. Electroanal Chem. 135, 173 (1982).
26.G. Tourillon, F. Gamier, J. Electroanal. Soc. 130, 2042 (1983).
27.R. J. Waltman, J. Bargon, A. F. Diaz, J. Phys. Chem. 87, 1459 (1983).
28.J. J. Ohsawa, K. Kaneto, K. Yoshino, Jap. J. App. Phys. 23, L663 (1984).
29.G. B. Street, T. C. Clarke, R. H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger, J. C. Scott, J. Phys. (Paris) C3, 599 (1983).
30.K. K. Kanazawa, A. F. Diaz, M. T. Krounbi, G.. B. Street, Synth. Met. 4, 119 (1981).
31.A. F. Diaz, J. A. Logan, J. Electroanal. Chem. 111, 111 (1980).
32.S. A. Chen, C. C. Tsai, Macromolecules 26, 2234 (1993).
33.Y. Wei, J. Tan, A. G. MacDiarmid, J. G. Masters, A. L. Smith, D. Li, JCSCC 7, 552 (1994).
34.E. M. Genies, M. Lapkowski, J. Electroanal. Chem. 236, 189 (1987).
35.K. Sasaki, M. Kaya. J. Yano, A. Kitani, A. Kunai, J. Electroanal. Chem. 215, 401 (1986).
36.Y. Wei, X. Tang, Y. Sun, W. W. Focke, J. Polym. Sci. Chem. Edn. 27, 2385 (1989).
37.T. Kobayashi, H. Yoneyama, H. Tamura, J. Electroanal. Chem., Interfacial Electrochem. 177, 281 (1984).
38.M. Kancko, H. Nagamura, T. Shimora, Makromol. Chem., Rapid Commun. 8, 179 (1987).
39.Y. Cao, A. Andreatta, A. J. Heeger, P. Smith, Polymer 30, 2305 (1989).
40.A. G. MacDiarmid, S. K. Manohar, J. C. Masters, Y. Sun, H. Weis, A. J. Epstein, Synth. Met. 41-43, 621 (1991).
41.K. Tzou, R. V. Gregory, Synth. Met. 47, 267 (1992).
42.Y. Wei, G.-W. Jang, C. C. Chan, J. Polym. Sci. Part-C. Polymer Letters 28, 219 (1990).
43.Y. Wei, K. F. Hsueh, G.-W. Jang, Polymer 35, 3572 (1994).
44.J. Stejskal, P. Kratochvil, M. Spirkova, Polymer 36, 4135 (1995).
45.N. Gospodinova, L. Terlemezyan, P. Mokreva, K. Kossev, Polymer 34, 2434 (1993).
46.N. Gospodinova, P. Mokreva, L. Terlemezyan, Polymer 36, 3585 (1995).
47.L. M. Huang, T. C. Wen, A. Gopalan, Synth. Met. 130, 155 (2002).
48.B. Palys, A. Kudelski, A. Stankiewicz, K. Jackowska, Synth. Met. 108, 111 (2000).
49.S. L. Mu, D. H. Sun, Synth. Met. 41-43, 3085 (1991).
50.H. J. Yang, A. J. Bard, J. Electroanal. Chem. 369, 193 (1994).
51.D. E. Stilwell, S. M. Park, J. Electrochem. Soc. 135, 2254 (1988).
52.S. L. Mu, J. Q. Kan, Electrochim. Acta 41, 1593 (1996).
53.T. J. Kemp, P. Moore, G. R. Quick, J. Chem. Res. 1981, 301 (1981).
54.A. Malinauskas, R. Holze, Electrochim. Acta 44, 2613 (1999).
55.A. Malinauskas, R. Holze, Ber. Besenges. Phys. Chem. 101, 1859 (1997).
56.A. Malinauskas, R. Holze, Electrochim. Acta 43, 2413 (1998).
57.M. Leclerc, J. Guay, L. H. Dao, Macromolecules 22, 649 (1989).
58.A. A. Athawale, B. A. Deore, M. V. Kulkami, Mater. Chem. Phys. 60, 262 (1999).
59.D. Goncalves, B. Matrenko, L. O. S. Bulhães, J. Electroanal. Chem. 415, 107 (1996).
60.Gazotti, N. Comisso, G. D. Aprano, M. Leclerc, Adv. Mater. 4, 749 (1992).
61.G. Pistoia, R. Rosati, Electrochim. Acta 3, 333 (1994).
62.Y. Wei, W. W. Focke, G. E. Wuck, A. R. and A. G. MacDiarmid, J. Phys. Chem. 93, 495 (1989).
63.L. X. Wang, X. B. Jing, F. S. Wang, Synth. Met. 41, 745 (1991).
64.F. A. Viva, E. M. Andrade, F. V. Molina, M. Florit, J. Electroanal. Chem. 471, 180 (1999).
65.D. Zhou, P. C. Innis, G. G. Walace, S. Shimizu and S. I. Maeda, Synth. Met. 114, 287 (2000).
66.S. A. Chen and G. W. Hwang, J. Am. Chem. Soc. 116, 7939 (1994).
67.Y. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein and A. G. MacDiarmid, J. Am. Chem. Soc. 113, 2665 (1991).
68.A. A. Karyakin, A. K. Stakhara, A. K. Yatstimirshy, J. Electroanal. Chem. 371, 259 (1994).
69.A. A. Karyakin, I. A. Maltsev, L. V. Lukachova, J. Electroanal. Chem. 402, 217 (1996).
70.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holomes, Nature 347, 539 (1990).
71.A. J. Heeger, Synth. Met. 57, 3471 (1993).
72.黃黎明,”苯胺-雙硫二苯胺導電高分子之電化學合成與物係探討”,國立成功大學化學系碩士論文 (2004).
73.林景正、賴宏仁,”奈米材料技術與發展趨勢”,9 (1999).
74.管傑雄、孫啟光,”奈米光電”,經濟部工業局,p-24 (2002).
75.劉仲明、郭東瀛,”奈米材料”,經濟部工業局,p-32 (2002).
76.尤如瑾等,”微奈米技術於電機能源產業之應用研究”,經濟部技術處,p 5-1 (2002).
77.黃文魁等,”兩岸奈米無機粉體材料資源與應用商機探討”,經濟部技術處,p 2-6 (2003).
78.徐國財、張立德,”奈米複合材料”,化學工業出版社 (2002).
79.黃俊益、吳春桂,”有機導電高分子/無機金屬氧化物複合材料的合成與性質探討. (2001)
80.蘇品書,超微粒子材料技術,復漢出版社 (1989).
81.莊萬發,”操微粒子理論應用”,復漢出版社 (1995).
82.Boutonet, J. Colloid Interf. Sci. 148, 80 (1992).
83.W. P. Halperin, Rev. of modern Phys. 58, 532 (1986).
84.D. L. Feldhein, C. D. Keating, Chem. Soc. Rev. 27, 1 (1998).
85.Y. W. Du, J. Appl. Phys. 63, 4100 (1988).
86.L. Brus, Nature 351, 301 (1991).
87.H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri Appl. Phys. Lett. 56, 2379 (1990).
88.工研院工業材料研究所,”材料奈米科技專刊”,台北:經濟部技術處 (2001).
89.柯揚船、皮特.斯壯、陳憲偉,”聚合物-無機奈米複合材料”,五南圖書出版股份有限公司 (2004).
90.J. M. Gloaguen, J. M. Lefebvre, Polymer 42, 5841 (2001).
91.J. L. Leblance, J. Appl. Polym. Sc. 78, 1541 (2000).
92.B. R. Mayer, J. E. Mark, E. Colloid Polymer Sci. 275, 333 (1997).
93.Nanomaterials:synthesis, properties, and applications, Edelstein, A. S. Bristol;/Institute of Physics Pub., (1996).
94.Giannelis, E. P. Adv. Mater. 8, 29 (1996).
95.S. Komarneni, J. Mater. Chem. 2, 1219 (1992).
96.R. Roy, S. Komameni, D. M. Roy, Mater. Res. Soc. Symp. Proc. 22, 347 (1984).
97.J. Wen, G. L. Wilkes, Chem. Mater. 8, 1667 (1996).
98.D. Y. Godovsky, Adv. Polym. Sci. 119, 79 (1995).
99.B. M. Novak, Adv. Mater. 5, 422 (1993).
100.R. Yokota, R. Horiuchi, M. Kochi, H. Soma, I. Mita, J. Polym. Sci.: Polym. Letter 26, 215 (1988).
101.W. S. Shi, H. Y. Peng, L. Xi, et al. Adv. Mater. 12, 1927 (2000).
102.王中林,”自然科學進展”, 10, 586 (2000).
103.M. J. Schwuger, K. Stickdorn, R. Schomaecker, Chem. Rev. 95, 849 (1995).
104.K. Landfester, M. Willert, M. Antonietti, Macromolecules 33, 2370 (2000).
105.P. Kent, B. R. Saunders, J. Colloid Interface. Sci. 242, 437 (2001).
106.W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun. 20, 2434 (2002).
107.M. S. Lee, G. D. Lee, S. S. Park, S. S. Hong, J. Ind. Eng. Chem. 9, 89 (2003).
108.C. J. Barbe, R. Graf, K. S. Finnie, M. Blackford, R. Trautman and J. R. Bartlett, J. Sol-Gel Sci Technol. 26, 457 (2003).
109.X. Li, C. K. Loong, P. Thiyagarajan, G. A. Lager, R. Miranda, J. Appl. Crystallography 33, 628 (2000).
110.T. Tado, T. Hatsuta, K. Miyajima, J. Am. Ceran. Soc. 85, 2188 (2002).
111.M. Fernandez, A. Martinez-Arias, A. Iglesias-Juez, A. B. hungria, A. Anderson, J. C. Conesa, J. Soria, Appl. Catal. B. 31, 39 (2001).
112.M. Li and S. Mann, Adv. Mater. 12, 773 (2002).
113.G. Decher, Science 277, 1232 (1997).
114.S. T. Dubas, J. B. Schlenoff, Macromolecules 32, 8153 (1999).
115.S. S. Shiratori, M. F. Rubner, Macromolecules 33, 4213 (2000).
116.D. M. DeLongchamp, P. T. Hammond, Chem. Mater. 15, 1165 (2003).
117.T. C. Wang, M. F. Rubner, R. E. Cohen, Langmuir 18, 3370 (2002).
118.D. G. Shchukin, I. L. Radtchenko, G. B. Sukhoruov, Chem. PhysChem. 4, 1101 (2003).
119.D. G. Shchukin, E. Ustinovich, D. V. Sviridov, Y. M. Lvov, G. B. Sukhorukov, Photochem. Photobiol. Sci. 2, 975 (2003).
120.J. Zhang, S. Xu, E. Kumacheva, J. Am. Chem. Soc. 126,7908 (2004).
121.A. Q. Zhang, C. Q. Cui, J. Y. Lee, F. C. Loh, J. Elecrochem. Soc., 142, 1097 (1995).
122.Z. Qi, P. G. Pickup, Chem. Commun. 1, 15 (1998).
123.謝志軒、陳東煌,”Ni/PMMA奈米複合材料之製備”,國立成功大學化學系碩士論文 (2001).
124.吳思翰、陳東煌,”金屬及金屬核殼型複合奈米粒子之製備”,國立成功大學化學系碩士論文 (2004)
125.Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105 (1996).
126.X. Li, G. Lu, S. Li, J. Mater. Sci. Lett. 15, 397 (1996).
127.I. Capek, adv. Colloid interface sci. 110, 49 (2004).
128.A. Bhattacharga, A. De, S. N. Bhattacharga, Synth. Met. 65, 35 (1994).
129.H. Yamato, W. Wernet, M. Ohwa, B. Rotinger, Synth. Met. 55-57, 3550 (1993).
130.H. L. M. Jocowitz, D. R. Baer, M. H. Engelhand,J. Janatu, J. Electrochem. Soc. 142, 798 (1995).
131.R. Davies, G. A. Schurr, P. Meenan, R. D. Nelson, H. W. Bergna, C. A. S. Brevet, R. H. Goldbaum, Adv. Mater. 10, 1264 (1998).
132.M. J. Croissant, T. Napporn, J. Leger, C. Lamy, Electrochim. Acta. 44, 4667 (1999).
133.S. Phadtare, A. Kumar, V. P. Vinod, C. Dash, D. V. Palaskar, M. Rao, P. G. Shukala, S. Sivaram, M. Sastry, Chem. Mater. 15, 1944 (2003).
134.M. A. Bereimer, G. Yevgeny, S. Sy and O. A. Sadik, Nano Lett. 6, 305 (2001).
135.G. Tourillon, F. Garnier, J. Phys. Chem. 88, 5281 (1984).
136.M. C. Henry, C. C.Hsuch, B. P. Timko, M. S. Freund, J. Electrochem. Soc. 148, D155 (2001).
137.D. G. Shchukin, G. B. Sukhorukov, Adv. Mater. 16, 671 (2004).
138.M. Fang, P. S. Grant, M. J. McShane, G. B. Sukhorukov, V. O. Golub, Y. M. Lvov, Langmuir 18, 6338 (2002).
139.T. C. Wang, B. Chen, M. F. Rubner, R. E. Cohen, Langmuir 17, 6610 (2001).
140.T. C. Wang, M. F. Rubner, T. E. Cohen, Chem. Mater. 15, 299 (2003).
141.K. G. Neoh, E. T. Kang, K. L. Tan, Polym. Degrad. Stab. 43, 141 (1994).
142.J. Yue, A. J. Epstein, J. Am. Chem. Soc. 112, 2800 (1990).
143.T. C. Wen, L. M. Huang, A. Gopalan, Electrochim. Acta 46, 2463 (2001).
144.G. D. Storrier, S. B. colbran, D. B. hibbert, synth. Met. 62, 179(1994).
145.T. Yamamoto, H. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Bull. Chem. Soc. Jpn. 77, 757 (2004).
146.J. K. Daniels, G. Chumanov, J. Electroanal. Chem. 575, 203 (2005).
147.A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
148.X. Dai, Y. Tan, J. Xu, Langmuir 18, 9010 (2002).
149.J. Dai, M. L. Bruening, Nano Lett. 2, 497 (2002).
150.G. E. Muilenberg, C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, “Handbook X-Ray Photoelectron Spectroscopy”, Perkin-Elmer, Eden Prarie, MN, p 112 (1977).
151.J. Yue, A. J. Epstein, Macromolecules 24, 4441 (1991).
152.C. W. Chen, T. Serizawa, M. Akashi, Chem. Mater. 11, 1381 (1999).
153.T. P. Bigioni, R. L. Whetten, O. Dag, J. Phys. Chem. B. 104, 6983 (2000).
154.R. A. de Barros, W. M. de Azevedo, F. M. de Aguiar, Materials Characterization 50, 131 (2003).
155.C. Mailherandolph, J. Desilvestro, J. Electroanal. Chem. 262, 289 (1989).