| 研究生: |
李明哲 Lee, Min-Jer |
|---|---|
| 論文名稱: |
電液動熱增強技術應用於鰭管式熱交換器之
性質研究 Heat Transfer and Fluid Flow Analysis in a Finned-Tube Heat Exchanger with Electrohydrodynamic Enhancement |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 板鰭管式熱交換器 、電液動力學 、橢圓管 |
| 外文關鍵詞: | oval finned-tube heat exchanger, Electrohydrodynamics (EHD), 3-D, numerical simulation |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用電液動( EHD,Electrohydrodynamic )理論探討一外加電場對板鰭管式熱交換器的熱液動性能特性的影響。文中針對四種不同的管排列(對齊、交錯)和電極排列(正方、對角), 以三維數值模擬相關的電場、速度場、壓力場以及溫度場,並且描述在不同的供給電壓( VE = 0 ~ 16KV )和雷諾數( Re = 100~1000 )時壓降及熱傳特性的變化。數值結果顯示外加電場的供給電壓增大時,科本因子(Colburn factor j )和摩擦因子(friction factor f )都會增加,但是當流場雷諾數增加時,熱傳增強的效果j/j0及壓損的增加f/f0會隨雷諾數的增加而減少,其中j0和f0為不施加電場下的Colburn factor和Fanning friction factor。由模擬結果得知在低雷諾數及高供給電壓時能夠產生最大的EHD熱傳增強效果。另外,交錯形( staggered )管排列方式、正方形( square )電極排列為探討的四種排列中具有最佳的熱傳增強效果。例如當供給電壓VE=16kV時,圓管的j/j0 = 2.18,f/f0 = 2.28,橢圓管(長短軸比2.5)的j/j0 = 2.43,f/f0 = 1.58,另外當供給電壓VE=16kV,交錯形( staggered )管排列方式、正方形( square )電極排列當中橢圓管的面積縮減能夠到達69﹪。總體來說在不同的供給電壓下橢圓管的面積縮減率約為圓管的1.6~3.3倍,此乃因橢圓管具流線形狀,若放置方向平行於流場則其壓損相對於圓管較小,因此EHD技術應用在橢圓管的效果比圓管佳。
The paper discusses the electrohydrodynamic (EHD) enhancement through 3-D laminar fluid flow and heat transfer over plate oval-finned heat exchangers. The effects of different tube pitch arrangements (in-lined and staggered) and electrode arrangements (square and diagonal) with different applied voltage (VE = 0KV to 16KV) are numerically investigated in detail for the Reynolds number (based on the fin spacing and frontal velocity) ranging from 100 to 1000. It is found that the EHD enhancement is more effective for lower Reynolds number and higher applied voltage. The case of square wire electrode arrangement gives the best heat transfer augmentation. This study identifies a maximum improvement of 243% in the average Nusselt number and a reduction in fin area of 69% as compared that without EHD enhancement. The results are also compared with the corresponding circular tube having the same perimeter. It is shown that EHD is more pronounced in elliptic tube.
1. Webb, R. L., “Principles of Enhanced Heat Transfer”, New York, John Wiley & Sons, 1994.
2. Yabe, A., Mori, Y., and Hijikata, K., “EHD Study of Corona Wind between Wire and Plate Electrode”, AIAA Journal, Vol. 16,No.4, pp.340-345, 1978.
3. Velkoff, H. R., and Godfrey, R. “Low-velocity Heat Transfer to a Flat Plate in the Presence of a Corona Discharge in Air”, Journal of Heat Transfer, Vol.101, pp.157-163, 1979.
4. Fujino, T. Yokohama, Y. and Mori. H. R., “Augmentation of Laminar Forced-Convection Heat Transfer by Application of a Transverse Electric Field”, Journal of Heat Transfer, Vol.111, pp.345-351, 1989.
5. Fujino, T. Yokohama, Y. and Mori. H. R., “Augmentation of Laminar Forced-Convection Heat Transfer by Application of a Transverse Electric Field”, Journal of Heat Transfer, Vol.111, pp.345-351, 1989.
6. Kulacki, F. A., “Augmentation of Low Reynolds Number Forced Convection Channel Flow by Electrostatic Discharge. “Low Reynolds Number Flow Heat Exchangers”, Edited by Kakac S., Hemisphere, Washington, D.C.: 753-782, 1983.
7. Nelson, D. A., Ohadi, M. M., Zia, S. and Whipple, R. L., “Electrostatic Effects on Heat Transfer and Pressure Drop in Cylindrical Geometries”, ASME J. Vol. 3, pp. 33-39, 1991.
8. Ohadi, M. M., Nelson, D. A. and Zia, S., “Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge”, Heat and Mass Transfer, J. Vol. 4, pp. 1175-1187, 1991.
9. Poulter, R. and Allen, P. H. G., “Electrohydrodynamically Augmented Heat and Mass Transfer in the Shell/Tube Heat Exchanger”, Proc. 8th Int. Heat Transfer Conf. San Francisco, pp. 2963-2968, 1986.
10. Owsenek, B. L., Seyed-Yagoobi, J. and Page, R. H., “Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plat”, Heat Transfer, J. Vol. 117, pp. 309-315, 1995.
11. Ogata, J., Iwafuji, Y., Shimada, Y., Yamazaki, T., “Boiling Heat Transfer Enhancement in Tube-Bundle Evaporators Utilizing Electric Field Effects”, ASHRAE Trans. Vol. 98, No.2, pp. 435-444, 1992.
12. Wangnipparnto, S., Tiansuwan, J., Jiracheewanun, S., Wang, C. C. and Kiatsiriroat, T., “Air Side Performance of Thermosyphon Heat Exchanger in Low Reynolds Number Region With and Without Electric Field”, Energy Conservation and Management Vol. 43, pp. 1791-1800, 2001.
13. Choi, H. Y., “Elecohydrodynamic Condensation Heat Transfer”, Journal of Heat Transfer , Transaction of the ASME Ser.C, Vol.90, pp.98-102, 1968.
14. Yabe, A., Kikuchi, K., Taketani, T., Mori, Y., Hijikata, K., “Augmentation of Condensation Heat Transfer by Applying Nanouniform Electric Fields”, Proceedings 7th International Heat Transfer Conference, Vol.5 pp.189-194, 1982.
15. Yabe, A., Mori, Y. and ijikata, K., “Heat Transfer Enhancement Techniques Utilizing Electric Fields”, Heat Transfer in High Technology and Power Engineering, pp. 394-405, 1987.
16. Yabe, A., Takentani, T., Mori, Y., Hijikata, K., “Augmentation of Condensation Heat Transfer Around Vertical Cooled Tubes Provided with Helical Wire Electrodes by Applying Nonuniform Electric Fields”, Heat Transfer Science and Technologh, ed. B. Wang, pp.812-819, 1987.
17. Cheung, K., “Electrohydrodynamic (EHD) Enhancement of Shell-Side Phase-Change Heat Transfer of Alternate Refigerants”, Ph.D. Thesis, University of Maryland, College Park, 1996.
18. Yabe, A. Mori, Y. Hijikata, K., ”Heat Transfer Enhancement Techniques Utilizing Electric Fields”, Heat Transfer in High Technology and Power Engineering, ed. Yang and Mori, pp. 394-405, 1987a.
19. Copper, P., “EHD Enhancement of Nucleate Boiling”, J. Heat Transfer, Trans. ASME, Vol. 112, pp.458-464, 1990.
20. Yabe, A., “Active Heat Transfer Enhancement by Applying Electric Fields”, ASME J. Vol. 3, pp. xv-xxiii, 1991.
21. Ishiguro, H., Nagata, S., Yabe, A. and Nariai, H., “Augmentation of Forced-Convection Heat Transfer By Applying Electric Fields to Disturb Flow Near a Wall”, ASME J. Vol. 3, pp. 25-31, 1991.
22. Ohadi, M. M., Faani, M., Papar, R., Rademacher, R. and Ng, T., “EHD Heat Transfer Enhancement of Shell-Side Boiling Heat Transfer Coefficients of R-123/Oil Mixture”, ASHRAE Trans., Vol. 98, Part2, pp. 427-434, 1992.
23. Ogata, J., Yabe, A., ”Basic Study on the Enhancement of Nucleate Boiling Heat Transfer by Applying Electric Fields”, Int. J. of Heat and Mass Transfer, Vol.36, No.3, pp.775-782, 1993.
24. Copper, P., “Practical Design Aspects of EHD Heat Transfer Enhancement in Evaporators”, ASHRAE Transactions, Vol.98, Part 2, pp.445-454, 1992.
25. Ogata, J., Iwafuji, Y., Shimada, Y., Yamazaki, T., “Boiling Heat Transfer Enhancement in Tube-Bundle Evaporators Utilizing Electric Field Effects”, ASHRAE Trans. Vol. 98, No.2, pp. 435-444, 1992.
26. Singh, A., Dessiatoun, S., Ohadi, M. M., Chu, W., “In-tube Boiling Heat Transfer Enhancement of R-123 Using the EHD Technique”, ASHARE Transcation, Vol.100, Part2, pp.818-825, 1994.
27. Seyed-Yagoobi J., Geppert, C. A., and Geppert, L. M., “Electrodynamically Enhanced Heat Transfer in Pool Boiling”, Journal of Heat Transfer, Vol.118, Feb., 1996.
28. Ahsmann, G., Kronig, R., “Thefluence of Electric Field on the Convective Heat Transfer in Liquids”, Appl. Sci. Res., Vol.A2, pp. 235-244, 1950.
29. Landau, L. D. and Lifshitz, E. M., “Electrohydrodynamics of continuous media, Pergamon”, New York, 1963.
30. Webb, R. L., “Principles of Enhanced Heat Transfer”, New York, John Wiley & Sons, 1994.
31. Van Doormaal, J. P. and Raithby, F. D., “Enhancements of the SIMPLE method for Predicting Incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
32. S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere publishing corpotation, 1978.
33. CFD-ACE(U ), CFD Research corporation, Alabama, USA, 2002.