簡易檢索 / 詳目顯示

研究生: 陳彥樵
Chen, Yen-Chiao
論文名稱: 以Fe2O3/SiO2吸收劑高溫去除硫化氫及氯化氫之研究
High-Temperature Sorption of Hydrogen Sulfide and Hydrogen Chloride by Fe2O3/SiO2
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: 除硫除氯氣化氣硫化氫氯化氫
外文關鍵詞: sulfur removal, chlorine removal, syngas, hydrogen sulfide, hydrogen chloride
相關次數: 點閱:114下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口的增加與科技的發展,能源的需求逐年增加,隨著石油及天然氣等能源逐漸枯竭短缺,煤礦為蘊藏量最豐富的化石能源,未來在使用燃煤發電技術會明顯增加,而如何潔淨使用煤礦已是世界各國爭相探討的課題。煤炭氣化複循環發電技術(IGCC)無論在技術成熟性、能源效率及環保性能都很卓越,因此將會是未來發電的主流之ㄧ。現在商業運轉之大型煤炭氣化複循環發電機組皆使用溼式商業化之除硫/氯程序,但其用水量大,而使得熱效率降低,為提高熱效率,降低發電及環保成本,利用高溫乾式除硫/氯方法將是未來的趨勢。
    本研究探討以自行製備之Fe2O3/SiO2吸收劑來處理硫化氫(H2S)/氯化氫(HCl),研究成果分成下列幾點說明:
    1.對同時去除H2S及HCl,以10% Fe2O3/SiO2有較好的去除效益,並且有許多含鐵之金屬廢棄物可以利用。
    2.在不同的操作溫度對於10% Fe2O3/SiO2同時去除H2S及HCl發現最佳的操作溫度應為500°C左右。
    3.觀察操作參數對於10% Fe2O3/SiO2除硫/氯效能之影響,H2S濃度增加、HCl濃度減小會增加吸收劑之利用率,這可能和氧化鐵對硫有較高的反應性有關。
    4.改變CO進流濃度對吸收劑利用率無顯著之影響,唯太高時(大於40%)可能會產生碳化鐵降低脫硫/氯容量;提高H2進流濃度可以增加吸收劑之利用率,可能為H2有助於提高脫氯反應之反應性有關;而空間流速在2,000 ~ 9,000 mL hr-1 g-1之間時脫硫/氯容量受空間流速影響不大。
    5.經過五次脫硫-再生循環測試後,發現10% Fe2O3/SiO2在第一次脫硫/氯再生循環後,其活性有較為明顯的衰退現象,但隨著再生次數的增加,其衰退現象逐漸緩和。而用空氣再生可使再生時間縮短,皆能在30分鐘內再生完畢。
    6.熱重分析實驗發現於還原氣氛下Fe2O3/SiO2吸收劑在高溫下會被還原為低氧化數的氧化鐵;於氧化氣氛下有部分FeS會先轉為FeSO4,才會在進一步氧化成Fe2O3。
    7.利用FTIR即時監測脫硫/氯反應中之氣相反應物及生成物的消長情形,推測其可能的脫硫/氯反應機制。在脫硫/氯反應的過程會伴隨著副產物(CO2、SO2、CS2、CH4)的生成,並且H2和CO對脫硫/氯反應有很大的影響。

    With the increasing population and the burgeoning industrial development, the energy demand for petroleum and natural gas has been growing up rapidly. Integrated Gasification Combined Cycle (IGCC), one of the most ideal technologies, utilizes coal to generate electricity, which is capable of not only reducing the emissions but also improving the efficiency of coal-burning. Thus this technology of coal-burning power is considered one of society’s greatest needs in the future. Nowadays, almost all commercial IGCC power plants use wet desulfurization and dechlorination processes to remove H2S/HCl and other deleterious gases from hot syngas by the use of large amount of water, resulting in the decreasing thermal efficiency of the system. Consequently, the development of dry desulfurization at high temperature becomes vitally important in this field.
    Desulfurization and dechlorination of syngas using homemade Fe2O3/SiO2 sorbent in a fixed bed reactor was conducted in this study. Results of this study are described as follows:
    1.Experimental results revealed that 10% Fe2O3/SiO2 had the best performance on simultaneous removal of H2S and HCl.
    2.500°C was considered the optimal operating temperature for the 10% Fe2O3/SiO2 sorbent to simultaneously remove H2S and HCl.
    3.It was found that the sorbent utilization increased with rising H2S concentration and decreasing HCl concentration, which was assumed to be related to the higher reactivity between Fe2O3 and H2S.
    4.The inlet CO concentration showed no evident influence on the sorbent utilization; while higher H2 concentration was found to increase the sorbent utilization. Additionally, Space velocity between 2,000~9,000 mL hr-1 g-1 also had no significant effect on the utilization.
    5.Through five-time regeneration tests an evident reactivity degradation of the sorbent was found after the first test, and as the experiments proceeded, the degradation phenomenon gradually reduced. Moreover, regenerating the sorbent with air could shorten the regeneration time within 30 minute.
    6.Under the reducing environment Fe2O3 contained in the sorbents were reduced low-activity iron oxides; while under oxidizing environment the sulfurated ferrite sorbents were oxidized to FeSO4 first and then were further oxidized to the original ferrite sorbent.
    7.To obtain more information on gas phase changes during the sorption experiment, outlet gases were monitored and recorded through on-line FTIR at various periods. By-products like CO2, CS2 and CH4 were found to have vital influence on the reaction, and CO and H2 were also discovered to play an important role in this system.

    摘要 I Abstract III 本論文之符號定義 V 目錄 A 表目錄 D 圖目錄 F 第一章 前言 1 1-1 研究動機 1 1-2 研究內容與架構 3 第二章 文獻回顧 5 2-1 IGCC技術簡介 5 2-2 H2S及HCl之特性 8 2-2.1 H2S之來源 8 2-2.2 H2S之性質 8 2-2.3 H2S之危害 10 2-2.4 HCl之來源 12 2-2.5 HCl之性質 12 2-2.9 HCl之危害 13 2-3.1 H2S之控制技術 15 2-3.2 HCl之控制技術 22 2-4 吸收劑特性 24 2-5 吸收劑之選擇 26 2-5.1 單一金屬氧化物吸收劑 27 2-5.2 混合型吸收劑 28 2-5.3 載體型吸收劑 30 2-6 吸收劑活性衰退 31 2-7 表面物理吸附等溫線 32 2-8 H2S及HCl轉化之操作參數 34 2-10 H2S及HCl轉化之機制 36 2-11 吸收劑反應動力之探討 37 2-11.1 衰退模式 38 2-11.2 Arrhenius表示式 40 第三章 研究方法與實驗器材 41 3-1 研究方法 41 3-1.1實驗規劃 41 3-1.2實驗步驟與方法 42 3-2 實驗器材 44 3-2.1 實驗系統裝置 44 3-2.2 實驗材料 51 3-3 預備實驗 53 3-3.1 吸收劑之製備 53 3-3.2 檢量線製作及儀器校正 54 3-3.3 空白實驗 54 第四章 結果與討論 57 4-1 不同活性金屬吸收劑去除H2S及HCl之性能比較 59 4-2 操作參數對10% Fe2O3/SiO2同時去除H2S及HCl之影響 61 4-2.1 操作溫度對10% Fe2O3/SiO2同時去除H2S及HCl之影響 61 4-3.2 進氣濃度及組成對以10% Fe2O3/SiO2同時去除H2S及HCl之影響 62 4-2.3 空間流速對10% Fe2O3/SiO2同時去除H2S及HCl之影響 73 4-3 脫硫/氯-再生循環對吸收容量影響之探討 75 4-3.1 脫硫/氯-再生循環測試 75 4-3.2 脫硫/氯再生之硫/氯回收率分析 81 4-4 程溫氧化及還原分析 84 4-4.1 還原氣氛下之熱重分析 84 4-4.2 氧化氣氛下之熱重分析 85 4-5 10% Fe2O3/SiO2吸收劑脫硫/氯前後之分析 87 4-5.1 SEM分析 87 4-5.2 SEM-EDS分析 95 4-5.3 Mapping分析 100 4-5.4 BET表面積與孔洞特性 108 4-5.5 XRD分析 111 4-6 10% Fe2O3/SiO2吸收H2S及HCl之反應機制探討 113 4-6.1 氫氣及一氧化碳對10% Fe2O3/SiO2去除H2S之影響 113 4-6.2 氫氣及一氧化碳對10% Fe2O3/SiO2去除HCl之影響 122 4-6.3 脫硫/氯反應途徑 130 4-7 脫氯反應動力模擬 132 4-7.1 第一型衰退模式 132 4-7.2 第二型衰退模式 135 第五章 結論與建議 137 5-1 結論 137 5-2 建議 138 參考文獻 139

    Abbasian, J., Slimane, R.B., A regenerable copper-based sorbent for H2S removal from coal gases. Industrial & Engineering Chenistry Research 37, 2775-2782, 1998.
    Ahmed, M.A., Garcia, E., Alonso, L., Palacios, J.M., A MS, SEM-EDX and XRD study of Ti or Cu-doped zinc ferrites as regenerable sorbents for hot coal gas desulfurization. Applied Surface Science 156, 115-124, 2000.
    Alonso, L., Palacios, J.M., Performance and recovering of a Zn-doped manganese oxide as a regenerable sorbent for hot coal gas desulfurization. Energy & Fuels 16, 1550-1556, 2002.
    Alonso, L., Palacios, J.M., Garcia, E., Moliner, R., Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Processing Technology 62, 31-44, 2000.
    Atimtay, A. T., Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas, Clean Products and Processes, 197-208, 2001.
    Ayala, R.E., Marsh, D.W., Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes. Industrial & Engineering Chemistry Research 30, 55-60, 1991.
    Bakker, W.J.W., Kapteijn, F., Moulijn, J.A., A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning. Chemical Engineering Journal 96, 223-235, 2003.
    Chang, L.P., Zhang, Z.Y., Ren, X.R., Li, F., Xie, K.C., Study on the Stability of Sorbents Removing H2S from Hot Coal Gas. Energy & Fuels 23, 762-765, 2009.
    Clark, P.D., Dowling, N.I., Huang, M., Svrcek, W.Y., Monnery, W.D., Mechanisms of CO and COS formation in the Claus furnace. Industrial & Engineering Chemistry Research 40, 497-508, 2001.
    Cuong, P.H., Crouzet, C., Estournes, C., Ledoux, M.J., High temperature H2S removal over high specific surface area beta-SiC supported iron oxide sorbent - Part 2 Sulfidation and regeneration. Journal of the Chemical Society-Faraday Transactions 94, 443-450, 1998.
    Dou, B.L., Pan, W.G., Ren, J.X., Chen, B.B., Hwang, J.H., Yu, T.U., Single and combined removal of HCl and alkali metal vapor from high-temperature gas by solid sorbents. Energy & Fuels 21, 1019-1023, 2007.
    Focht, G.D., Ranade, P.V., Harrison, D.P., High-Temperature Desulfurization Using Zinc Ferrite - Reduction and Sulfidation Kinetics. Chemical Engineering Science 43, 3005-3013, 1988.
    Focht, G.D., Ranade, P.V., Harrison, D.P., High-Temperature Desulfurization Using Zinc Ferrite - Regeneration Kinetics and Multicycle Testing. Chemical Engineering Science 44, 2919-2926, 1989.
    Fujimori, T., Takaoka, M., Morisawa, S., Chlorinated Aromatic Compounds in a Thermal Process Promoted by Oxychlorination of Ferric Chloride. Environmental Science & Technology 44, 1974-1979, 2010.
    Garcia, E., Cilleruelo, C., Ibarra, J.V., Pineda, M., Palacios, J.M., Kinetic study of high-temperature removal of H2S by novel metal oxide sorbents. Industrial & Engineering Chemistry Research 36, 846-853, 1997.
    Gupta, R.P., O'Brien, W.S., Desulfurization of hot syngas containing hydrogen chloride vapors using zinc titanate sorbents. Industrial & Engineering Chemistry Research 39, 610-619, 2000.
    Jang, H.T., Kim, S.B., Doh, D.S., The removal of hydrogen sulfide with manganic sorbent in a high-temperature fluidized-bed reactor. Korean Journal of Chemical Engineering 20, 116-120, 2003.
    Jun, H. K., Lee, T. J., Kim, J. C., Role of Iron Oxide in the Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures, Industrial & Engineering Chenistry Research 41, 4733-4738, 2002
    Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., A Study of Zn—Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides, Industrial & Engineering Chenistry Research 40(16), 3547-3556 , 2001.
    Kameda, T., Uchiyama, N., Park, K.S., Grause, G., Yoshioka, T., Removal of hydrogen chloride from gaseous streams using magnesium-aluminum oxide. Chemosphere 73, 844-847, 2008.
    Karayilan, D., Dogu, T., Yasyerli, S., Dogu, G., Mn-Cu and Mn-Cu-V mixed-oxide regenerable sorbents for hot gas desulfurization. Industrial & Engineering Chemistry Research 44, 5221-5226, 2005.
    Ko, T.H., Chu, H., Lin, H.P., Peng, C.Y., Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas. Journal of Hazardous Materials 136, 776-783, 2006a.
    Ko, T.H., Chu, H., Tseng, J.J., Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils. Chemosphere 64, 881-891, 2006b.
    Kobayashi, M., Flytzani-Stephanopoulos, M., Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide. Industrial & Engineering Chemistry Research 41, 3115-3123, 2002.
    Kobayashi, M., Shirai, H., Nunokawa, M., Estimation of multiple-cycle desulfurization performance for extremely low-concentration sulfur removal with sorbent containing zinc ferrite-silicon dioxide composite powder. Energy & Fuels 16, 1378-1386, 2002a.
    Kobayashi, M., Shirai, H., Nunokawa, M., Measurements of sulfur capacity proportional to zinc sulfidation on sorbent containing zinc ferrite-silica composite, powder in pressurized coal gas. Industrial & Engineering Chemistry Research 41, 2903-2909, 2002b.
    Konttinen, J., Mojtahedi, W., Gasifier Gas Desulfurization at High Temperature and Pressure, Repr Kemia-Kemi, 20, 847-851, 1993.
    Lew, S., Jothimurugesan, K., Flytzani-Stephanopoulos, M., High-Temperature H2S Removal from Fuel Gases by Regenerable Zinc-Oxide Titanium-Dioxide Sorbents. Industrial & Engineering Chemistry Research 28, 535-541, 1989.
    Li, Z.J., Flytzani-Stephanopoulos, M., Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization. Industrial & Engineering Chemistry Research 36, 187-196, 1997.
    Mojtahedi, W., Abbasian, J., H2S Removal from Coal-Gas at Elevated-Temperature and Pressure in Fluidized-Bed with Zinc Titanate Sorbents .1. Cyclic Tests. Energy & Fuels 9, 429-434, 1995.
    MSDS, http://www.iosh.gov.tw/Publish.aspx?cnid=25.
    Nagl, G., Controlling H2S emission, Chemical Engineering, , 125-131, 1997.
    Nunokawa, M., Kobayashi, M., Shirai, H., Halide compound removal from hot coal-derived gas with reusable sodium-based sorbent. Powder Technology 180, 216-221, 2008.
    Patrick, V., Gavalas, G.R., Flytzani-Stephanopoulos, M., Jothimurugesan, K., High-Temperature Sulfidation Regeneration of CuO-Al2O3 Sorbents. Industrial & Engineering Chemistry Research 28, 931-940, 1989.
    Pineda, M., Fierro, J.L.G., Palacios, J.M., Cilleruelo, C., Garcia, E., Ibarra, J.V., Characterization of zinc oxide and zinc ferrite doped with Ti or Cu as sorbents for hot gas desulphurization. Applied Surface Science 119, 1-10, 1997.
    Poston, J.A., A reduction in the spalling of zinc titanate desulfurization sorbents through the addition of lanthanum oxide. Industrial & Engineering Chemistry Research 35, 875-882, 1996.
    Sasaoka, E., Ichio, T., Kasaoka, S., High-temperature hydrogen sulfide removal from coal-derived gas by iron ore, Energy & Fuels, 6, 603-608, 1992.
    Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., Reactivity and Durability of Iron-Oxide High-Temperature Desulfurization Sorbents. Energy & Fuels 7, 632-638, 1993.
    Swisher, J. H., Yang, J., Gupta, R. P., “Attirtion-resistant Zinc Titanate Sorbent for Sulfur”, Industrial & Engineering Chemistry Research 34, 4463-4471, 1995.
    Westmoreland, P.R., Harrison, D.P., Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases. Environmental Science & Technology 10, 659-661, 1976.
    Van der Ham, A. G. J., Vanderbosch, R. H., Prins, W., Survey of Desulfurization Processes for Coal Gas In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO Advanced Science Institutes Series 42, 117-136, 1996.
    Yasyerli, S., Dogu, G., Ar, I., Dogu, T., Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Industrial & Engineering Chemistry Research 40, 5206-5214, 2001.
    Zhang, H.T., Zhang, J., Effects of Gas Temperature Fluctuations on the Evolution of Nitrogenous Species during Coal Devolatilization. Industrial & Engineering Chemistry Research 48, 2206-2211, 2009.
    Zhao, J.T., Huang, J.J., Zhang, J.M., Wang, Y., Influence of fly ash on high temperature desulfurization using iron oxide sorbent. Energy & Fuels 16, 1585-1590, 2002.
    王奕凱、邱宏明、李秉傑合譯,「非均勻系催化原理與應用」,國立編譯館,渤海堂文化公司,1993。
    王志成、李福文,「硫化氫新處理技術:SULFA CHECK與現行方法之比較」,工業污染防治,第30期,197-202,1989。
    中國鋼鐵股份有限公司,「能源密集產業採用淨煤發電技術應用規劃計劃」,經濟部能源委員會,2000。
    朱信、曾明宗,「煤炭企劃複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計畫期末報告,p.26-29,1991。
    邱穎源,「以Pt/Al2O3觸媒焚化處理醇類與硫醇類之研究」,國立成功大學環境工程學系,碩士論文,1994。
    林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系,碩士論文,1996。
    林曉萍,「以重金屬廢水污泥經高溫合成之鐵氧磁體高溫去除H2S之吸收特性」,國立成功大學環境工程學系研究所,碩士論文,2006。
    柯子星,「以紅壤在高溫下去除煤炭氣化氣中硫化氫之研究」,國立成功大學環境工程學系博士論文,2005。
    柯清水,「養殖池中硫化氫之成因及對策」,養魚世界,1999, p.36-39。
    徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
    望熙榮(譯),Cooper, C. D., Alley, F. C.,「空氣污染防治」,中央圖書,1998。
    張翰青,「以重金屬廢水污泥產生之鐵氧磁體高溫去除H2S之吸收特性」,國立成功大學環境工程學系研究所,碩士論文,2005。
    賀長富,「台北市北投區溫泉業維修作業人員硫化氫暴露之研究」,中國文化大學勞工研究所,碩士論文,2001。
    黃瀞瑩,「以Fe2O3/SiO2吸收劑高溫去除硫化氫及硫化羰之研究」,國立成功大學環境工程學系,碩士論文,2007。
    劉陽秋,「燒煤發電之先進技術」,台電工程月刊,第571期1-8,1995。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE