| 研究生: |
王憲奕 Wang, Hsien-Yi |
|---|---|
| 論文名稱: |
應用『檢驗資訊視覺化系統』於透析病患之臨床照護研究 Application of “Laboratory Information Visualization System” on Dialysis Patients Care |
| 指導教授: |
康信鴻
Kang, Hsin-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 資訊視覺化 、商業智慧 、線性機率模型 、透析治療 |
| 外文關鍵詞: | Information visualization, Business intelligence, Linear probability model, Dialysis |
| 相關次數: | 點閱:190 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為探討腎臟專科醫師對於採用專為透析病患臨床照謢所開發之『檢驗資訊視覺化系統』的關鍵影響因素,以結構式問卷紙本與電子檔發放給各級醫療院所之腎臟專科醫師,問卷內容包含四大構面等相關變數及受試者基本人口學的資料蒐集,並將回收之資料加以登記、整理與統計分析,共取得七十九份有效問卷樣本。
本研究導入商業智慧系統中的『資訊視覺化』等工具,將透析病患接受血液檢驗之每月結果加以整理、分析之後,根據透析室評鑑條文之規定,以『資訊視覺化』方式即時呈現,有別於傳統之純數字呈現。問卷將以『若預估系統成本約需要新台幣二十四萬元左右,您是否願意在一年內採用此系統』為被解釋變數,利用線性機率模型尋找最終迴歸方程式,並分別以『創新擴散性』、『知覺有用性』、『知覺易用性』及『醫療品質與服務』等四大構面十三項問項為解釋變數,利用線性機率模型等統計方法進行實證分析,以探討影響腎臟專科醫師採用此系統之關鍵因素。
本研究初步實證結果顯示,『系統儲存或查詢檢驗資料是安全及受保護的』這項變數是腎臟專科醫師採用這套『檢驗資訊視覺化系統』於透析病患臨床照謢上最為擔心的因素,其他變數則都無法顯示統計學上顯著之差異。最後本研究針對初步結果提出幾項建議,(1) 增加醫療院所決策者對於新資訊產品的信心、(2) 增加資訊人員動機與減少資訊安全疑慮、(3) 整合電腦系統與手持式裝置的應用,以提升醫療效率。
(1) Scopy and Objectives: “Big data” management is an emerging critical issue at 21st century. Who can collect, extract, transform primary data into useful secondary information, who can make sustainable competitive advantages. The aim of this research is determining the key influence factor(s) on acceptance of “Laboratory Information Visualization System”, designed by business intelligence software, in dialysis patient care at Taiwan. (2) Methods: Enrolled 79 certified Nephrologists working at different level of medical facilities. Cross-sectional study by structured questionnaires with 13 items, contained 4 domains with Diffusion of innovation, Perceived usefulness, Perceived ease of use, and healthcare quality. Econometrics theory with Linear Probability Model and several statistical methods were used for searching optimal regression model. 「Would you adopt the system with NT240,000 within 1 year? 」 was set as dependent variable. (3) Results: There are 58 Nephrologists (73.4%) working at hospitals, 44 (55.7%) with more than 10 years of services, 59 (74.7%) have not heard or saw this kind of system, and 43 (54.4%) do not adopt this system. 「The data storage and look-up are safe and protected」 is the statistically significant influence factor when adopting the system by Nephrologists. (4) Conclusions: Although the safety of patients’ information is the most concern issue at healthcare providers, it can be overcame by well-designed business intelligence system, as the many famous international corporations do. The quality of care and satisfaction of patients will be upgraded further, if the system can integrated with mobile devices and operated via cloud computation.
參考文獻
一、中文部份
1. 吳萬益 (2000). 企業研究方法. 台灣, 華泰文化事業股份有限公司.
2. 李亭亭、施玉珊 (2009). "運用創新擴散理論於促進護理資訊系統之推展." 護理雜誌 56(3): 18-22.
3. 楊正仁 (2001). "資訊視覺化呈現之發展與挑戰." 21世紀資訊科學與技術學術研討會: 291-305.
4. 衛生福利部中央健康保險署 (2013). 101年全民健保統計摘要分析. Taiwan, 衛生福利部.
5. 馬偕紀念醫院. (2013, November 29). "馬偕攜手微軟 Office365打造雲端醫療管理系統."
二、英文部份
1. Cho, N. and Park, S. (2002). "Development of electronic commerce user-consumer satisfaction index (ECUSI) for Internet shopping." Industrial Management and Data Systems 101(8): 400-405.
2. Davis, F. D. (1989). "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technologies." MIS Quarterly 13: 319-339.
3. Davis, F. D., Bagozzi R. P. and Warshaw P. R. (1989). "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models." Management Science 35(8): 982-1003.
4. Dolan, J. G., Veazie P. J. and Russ A. J. (2013). "Development and initial evaluation of a treatment decision dashboard." BMC Med Inform Decis Mak 13: 51.
5. Dooley, K. E. (1999). "Towards a holistic model for the diffusion of educational technologies: An integrative review of educational innovation studies." Educational Technology & Society 2(4): 35-45.
6. Orruño, E., Gagnon, M. P., Asua, J. and Ben Abdeljelil, A. (2011). "Evaluation of teledermatology adoption by health-care professionals using a modified Technology Acceptance Model." J Telemed Telecare 17(6): 303-307.
7. Foundation, N. K. (2002). "KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification."
8. Graaff, J. V. D. (2012). "BI Perception 2012: A wave is coming." http://www.KLASresearch.com.
9. Harle, C.,Padman, R. and Neill, D. (2012). "Information Visualization for Chronic Disease Risk Assessment." IEEE Intelligent Systems 27(6): 81-85.
10. Hwang, S. J., Yang, W. C., Lin, M. Y, Mau, L. W., Chen, H. C. (2010). "Impact of the clinical conditions at dialysis initiation on mortality in incident haemodialysis patients: a national cohort study in Taiwan." Nephrol Dial Transplant 25(8): 2616-2624.
11. IDF Diabetes Atlas, t. e. (2013). "Diabetes Atlas - Key Messages."
12. Liu, C. F., Tsai, Y. C. and Jang, F. L. (2013). "Patients’ Acceptance towards a Web-Based Personal Health Record System: An Empirical Study in Taiwan." Int. J. Environ. Res. Public Health 10(5191-5208).
13. Loudon, D., Macdonald, A. S., Carse, B., Thikey, H., Jones, L., Rowe, P., Uzor, J. S., Ayoade, M. and Baillie, L. (2012). "Developing visualisation software for rehabilitation: Investigating the requirements of patients, therapists and the rehabilitation process." Health Informatics Journal 18(3): 171-180.
14. Luhn, H. P. (1958). "A Business Intelligence System." IBM Journal of Research and Development 2(4): 314-319.
15. Pendse, N. (2009). Fast Analysis of Shared Multidimensional Information (FASMI). The BI Verdict. Business Application Research Center.
16. Rajkovic, P. J. and Jankovic, D. S. (2009). "Custom Made Medical Data Reporting Tool." TELSIKS 9th International Conference: 306-309.
17. Ramayah, T. and Ignatius, J (2005). "Impact of Perceived usefulness, Perceived ease of use and Perceived Enjoyment on Intention to shop online." ICFAI Journal of Management: 1-16.
18. Rogers, E. M. (1962). Diffusion of Innovations.
19. Rogers, E. M. (2003). Diffusion of innovations(5th ed.). New York.
20. Sahin, I. (2006). "Detailed Review of Roger's Diffusion of Innovations Theory and Educational Technology-Related Studies Based on Roger's Theory." The Turkish Online Journal of Educational Technology 5(2): 14-23.
21. Sebastian, K., Sari, V., Loy, L. Y., Zhang, F., Zhang, Z. and Feng, M. (2012). "Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients." Conf Proc IEEE Eng Med Biol Soc 2012: 2000-2003.
22. Shusaku, T., Shoji, H. and Yuko, T. (2012). "Visualization of Hospital Services using Data Mining Methods." 11th IEEE International Conference on Data Mining Workshops: 1183-1190.
23. Smiciklas, M. (2012). The power of Infographics. USA, Que publisher.
24. Stuart, W. D. (2000). Influence of sources of communication, user characteristics and innovation characteristics on adoption of a communication technology. D. dissertation, The University of Kansas.
25. Tan, Y. M., Hii, J., Chan, K., Sardual, R. and Mah, B. (2013). "An electronic dashboard to improve nursing care." Stud Health Technol Inform 192: 190-194.
26. Ufford, D. Q. v. (2002). "Business Intelligence: The Umbrella Term."
27. USRDS (2013). "U.S Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2013."