簡易檢索 / 詳目顯示

研究生: 張詠順
Chang, Yong-Shuen
論文名稱: 肌酸酐模版材料之製備及對肌酸酐之吸附探討
Preparation of Creatinine Imprinted Material and the Investigation on the Adsorption of Creatinine
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 有機-無機混成模版高分子溶膠-凝膠法分子模版肌酸酐
外文關鍵詞: organic -inorganic hybrid molecularly imprinted, sol-gel process, molecular imprinting, creatinine
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   肌酸酐 (creatinine) 為由肌肉中肌酸 (creatine) 分解而來的物質,為人體腎臟代謝的終端產物之一,是一種常用來評估腎功能的重要指標。本研究乃利用此分子模版技術 (molecular imprinting) 來製備對肌酸酐具有特殊辨識能力的分子模版高分子。製備方法是以溶膠-凝膠法 (sol-gel),在前驅物四乙烷基矽烷 (tetraethoxy-silane,TEOS) 摻入有機功能性單體2-烴醯胺基-2-甲基-1-丙磺酸 (2-acrylamido-2-methyl- propane-sulfonic acid,AMPS),經過水解-縮合反應後形成了所謂的有機-無機混成模版高分子。在單成份肌酸酐溶液吸附之下,有機-無機混成模版高分子對肌酸酐之鍵結容量為 32.57 ± 2.50 mg creatinine/g MIP,而非模版高分子對肌酸酐之鍵結容量則為 9.65 ± 1.47 mg creatinine/g NIP。兩者相除得到之模版因子 (imprinting factor) 為3.42 ± 0.37。除此之外,該有機-無機混成模版高分子在混合溶液吸附之下,對於肌酸酐也具有相當良好的辨識能力,對混合物肌酸、N-羥基丁二硫亞氨 (N-hydroxy- succinimide)、肌酸酐以及吡咯烷酮 (2-pyrro-lidinone) 之選擇比分別為0.053 ± 0.014、0.034 ± 0.008、0.854 ± 0.026以及0.059 ± 0.004。

      在確認其特異性吸附之可行性後,以分子模印技術將肌酸酐辨識基座建置於電極上,配合以阻抗式感測法來分析肌酸酐濃度。初步測試結果顯示這種感測方式是可行的,但感測效果及實用性則待進一步評估。

      Creatinine is produced from creatine in muscle and is one of the end products of kidney metabolism. It is usually used as an important index to estimate the kidney function. In this study the polymer with specific recognition ability for creatinine is synthesized via molecular imprinting technique. The preparation method involves the sol-gel process. The inorganic precursor, tetraethoxysilane (TEOS), is mixed with the organic functional monomer, 2-acrylamido-2-methyl-propanesulfonic acid (AMPS), through the hydrolysis-condensation reaction, the so-called organic-inorganic hybrid creatinine imprinted polymer is formed. The binding capacity of the polymer towards creatinine in single creatinine solution is 32.57 ± 2.50 mg creatinine/ g MIP and 9.65 ± 1.47 mg creatinine/g NIP from the non-imprinted polymer. The imprinting factor, defined as the binding capacity from the H-MIP to that of H-NIP, is 3.42 ± 0.37. On the other hand, the selectivity ratios in mixture solution comprised of creatine, N-hydroxysuccinimide, creatinine and 2-pyrro-lidinone were 0.053 ± 0.014, 0.034 ± 0.008, 0.854 ± 0.026 and 0.059 ± 0.004, respectively.

      As the feasibility of this hybrid material for specific recognition of creatinine is confirmed, the creatinine-recognition polymer film is fabricated on the Au-electrode and is then analyzed via impedometric transducer. Such an electrode is feasible from the initial investigation, but further comfirmation on the sensing effect and the clinical application still need to investigate.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅷ 專有名詞對照表 Ⅹ 第一章 緒論 1 1.1 肌酸酐 (Creatinine) 1 1.2 分子模版 (Molecular imprinting) 2 1.2.1 模版方式 (Imprinting interction) 3 1.2.2 模版材料之組成物 5 1.2.3 聚合方式 6 1.2.4 模版高分子吸附行為之分析 7 1.3 溶膠-凝膠法 (Sol-gel) 8 1.3.1 前趨物 (Precusor molecules) 9 1.3.2 水解反應 (Hydrolysis) 10 1.3.3 縮合反應 (Condensation) 10 1.3.4 有機-無機混成之溶膠-凝膠高分子以及其應用性11 1.4 阻抗 (Impedance) 12 1.5 電容式生物感測器 (Capacitive biosensors) 15 1.6 研究動機與目的 16 第二章 實驗步驟、藥品與儀器 18 2.1 有機-無機混成之肌酸酐模版高分子製備 18 2.2 肌酸酐模版無機高分子製備 18 2.3 模版高分子之吸附實驗 18 2.4 模版高分子之定性分析 19 2.4.1掃瞄式電子顯微鏡 (SEM) 觀察 19 2.4.2固態核磁共振光譜分析 (Solid-state NMR) 20 2.4.3傅立葉紅外線光譜分析 (FT-IR) 20 2.4.4比表面積和孔徑分佈 20 2.5 分子模版電極之製備 20 2.6 電容式分子模版電極之分析與感測 20 2.7 實驗藥品 25 2.8 實驗儀器 26 第三章 結果與討論 27 3.1 有機-無機混成模版高分子對吸附肌酸酐溶液之結果探討 27 3.2 遮蓋修飾之有機-無機混成模版高分子對吸附肌酸酐溶液之結果探討 35 3.3 無機模版高分子對肌酸酐溶液之吸附結果探討 39 3.4 有無功能性單體以及有無遮蔽之四種不同模版高分子對肌酸酐辨識能力之結果比較 46 3.5 有機-無機混成高分子之吸附行為分析 47 3.5.1 不同吸附時間對肌酸酐鍵結容量之影響 47 3.5.2 Scatchard plot分析 49 3.5.3 等溫吸附曲線以及吸附曲線模擬分析 52 3.5.4 親和性分佈 55 3.6 有機-無機混成材料之定性分析 56 3.6.1 SEM 56 3.6.2 Solid-state 13C NMR 56 3.6.3 Solid-state 29Si NMR 62 3.6.4 FT-IR 62 3.6.5 孔洞大小分佈以及BET比表面積 66 3.7 分子模版電極之實驗結果68 第四章 結論 77 參考文獻 79

    1.S. F. Sena, D. Syed, R. Romeo, G. A. Krzymowski and R. B. McComb, “Lidocaine metabolite and creatinine measurements in the Ektachem 700: steps to minimize its impact on patient care”, Clin. Chem., 1988, 34, 2144- 2148.

    2.A. S. Cabeza, R. H. Hernandez and P. C. Falcó, Anal. Lett., 1991, 24, 1741-1766.

    3.T. Dsakai, H. Ohta, N. Ohno and J. Imai, “Routine assay of creatinine in newborn baby urine by spectrophotometric flow-injection analysis ”, Anal. Chim. Acta, 1995, 308, 446-450.

    4.M. Meyerhoff and G. A. Rechnitz, “An activated enzyme electrode for creatinine”, Anal. Chim. Acta, 1976, 85, 277-285.

    5.M. Jurkiewicz, S. Alegret, J. Almirall, M. García and E. Fàbregas, “Development of a biparametric bioanalyser for creatinine and urea. Validation of the determination of biochemical parameters associated with hemodialysis”, Analyst, 1998, 123, 1321-1327.

    6.Y. T. Shih and H. J. Huang, “A creatinine deiminase modified polyaniline electrode for creatinine analysis”, Anal. Chim. Acta, 1999, 392, 143-150.

    7.T. Tsuchida and K. Yoda, “Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum”, Clin. Chem., 1983, 29, 51-55.

    8.E. J. Km, T. Haruyama, Y. Yanagida, E. Kobatake and M. Aizawa, “Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system”, Anal. Chim. Acta, 1999, 394, 225-231.

    9.H. A. Tsai and M. J. Syu, “Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor”, Anal. Chim. Acta, 2005, 539, 107-116.

    10.T. P. Delaney, V. M. Mirsky and O. S. Wolfbeis, “Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer”, Electroanalysis, 2002, 14, 221-224.

    11.G. Wulff, R. G. Einsler and A. Sarhan, “Enzyme-analogue built polymers, 5. On the specificity distribution of chiral cavities prepared in synthetic polymers”, Die Makro. Chemie., 1977, 178, 2817-2825.

    12.T. A. Sergeyeva, S. A. Piletsky, E. V. Piletska, O. O. Brovko, L. V. Karabanova, L. M. Sergeeva, A. V. El'skaya and A. P. F. Turner, “In Situ Formation of Porous Molecularly Imprinted Polymer Membranes”, Macromolecules, 2003, 36, 7352-7357.

    13.P. Spégel, L. Schweitz and S. Nilsson, “Molecularly imprinted polymers in capillary electrochromatography: Recent developments and future trends”, Electrophoresis, 2003, 24, 3892-3899.

    14.N. Masque, R. M. Marce, F. Borrull, P. A. G. Cormack, D. C. Sherrington, “Synthesis and Evaluation of a Molecularly Imprinted Polymer for Selective On-Line Solid-Phase Extraction of 4-Nitrophenol from Environmental Water”, Anal. Chem., 2000, 72, 4122-4126.

    15.J. J. Becker, M. R. Gagne, “Exploiting the Synergy between Coordination Chemistry and Molecular Imprinting in the Quest for New Catalysts”, Acc. Chem. Res., 2004, 37, 798-804.

    16.C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. M. McHale and W. Hayes, “Molecular-Imprinted, Polymer-Coated Quartz Crystal Microbalances for the Detection of Terpenes”, Anal. Chem., 2001, 73, 4225-4228.

    17.M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake and I. Willner, “Tailored Chemosensors for Chloroaromatic Acids Using Molecular Imprinted TiO2 Thin Films on Ion-Sensitive Field-Effect Transistors”, Anal. Chem., 2001, 73, 720-723.

    18.J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki and N. Sugimoto, “SPR Sensor Chip for Detection of Small Molecules Using Molecularly Imprinted Polymer with Embedded Gold Nanoparticles”, Anal. Chem., 2005, 77, 4282-4285.

    19.K. A. Marx, “Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface”, Biomacromolecules, 2003, 4, 1099-1120.

    20.L. I. Andersson, A. Miyabayashi, D. J. O'Shannessy and K. Mosbach, “Enantiomeric resolution of amino acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements”, J. Chromatogr., 1990, 516, 323-31.

    21.A. Kugimiya, I. Matsui, T. Takeuchi, K. Yano, H. Muguruma, A. V. Elgersma and I. Karube, Anal. Lett., 1995, 28, 2317.

    22.T. Kukawa, T. Goto, H. Nariai, T. Aoki, A. Imamura and T. Takeuchi, “Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates ”, J. Pharm. Biomed. Anal., 2003, 30, 1943-1947.

    23.G. Vlatakis, L. I. Andersson, R. Muller and K. Mosbach, “Drug assay using antibody mimics made by molecular imprinting”, Nature, 1993, 361, 645-647.

    24.K. Tanabe, T. Takeuchi, J. Matsui, K. Ikebukuro, K. Yano and I. Karube, “Recognition of barbiturates in molecularly imprinted copolymers using multiple hydrogen bonding”, J. Chem. Soc. Chem. Commun., 1995, 2303- 2304.

    25.K. Haupt, A. Dzgoev and K. Mosbach, “Assay System for the Herbicide 2,4-Dichlorophenoxyacetic Acid Using a Molecularly Imprinted Polymer as an Artificial Recognition Element”, Anal. Chem., 1998, 70, 628-631.

    26.J. Matsui, K. Fujiwara and T. Takeuchi, “Atrazine-Selective Polymers Prepared by Molecular Imprinting of Trialkylmelamines as Dummy Template Species of Atrazine”, Anal. Chem., 2000, 72, 1810-1813.

    27.M. Jaroniec and R. Madey, “Physical Adsorption on Heterogeneous Solids”, Elsevier: New York, 1988.

    28.K. Ninomiya and J. D. Ferry, “Some approximate equations useful in the phenomenological treatment of linear viscoelastic data”, J. Colloid Interf. Sci., 1959, 14, 36-42.

    29.D. L. Hunston, “Two techniques for evaluating small molecule- macromolecule binding in complex system”, Anal. Biochem., 1975, 63, 99-109.

    30.R. J. Umpleby II, S. C. Baxter, A. M. Rampey, G. T. Rushton, Y. Chen and K. D. Shimizu, “Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers”, J. Chromatogr. B, 1990, 516, 323-31.

    31.L. L. Hench and J. K. West, “The sol-gel process”, Chem. Rev., 1990, 90, 33-72.

    32.C. J. Brinker and G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc., New York, 1990.

    33.R. K. Iler, “The Chemistry of Silica, Wiley”, New York, 1979.

    34.A. Katz and M. E. Davis, “Molecular imprinting of bulk, microporous silica”, Nature, 2000, 403, 286-289.

    35.Y. C. Wang, Y. D. Lee, C. I. Lin, A. K. Joseph and C. K. Chang, “Synthesis of molecular imprinted organic–inorganic hybrid polymer binding caffeine”, Anal. Chim. Acta, 2003, 481, 175–180.

    36.G. Zhang, Y. Chen, H. Li and Y. Xie, “Preparation of Silica-Based Inorganic-Organic Hybrid Membrane via the Sol-Gel Route”, J. Sol-Gel Sci. Techn., 2000, 19, 425-428.

    37.S. Yano, K. Iwata and K. Kurita, “Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process”, Mat. Sci.
    Eng., 1998, 6, 75-90.

    38.L. C. Klein, “Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Speciality Shapes”, Noyes Publications, Park Ridge, New Jersey, U.S.A. 1988.

    39.A. J. Bard and L. R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, John Wiley & Sons, Inc., USA, 2000.

    40.W. O. Ho, S. Krause, C. J. McNeil, J. A. Pritchard, R. D. Armstrong, D. Athey and K. Rawson, “Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of Enzyme-Catalyzed Polymer Transformation”, Anal. Chem., 1999, 71, 1940-1946.

    41.C. E. Jordan, A. G. Frutos, A. J. Thiel and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of DNA Hybridization Adsorption and Streptavidin/DNA Multilayer Formation at Chemically Modified Gold Surfaces”, Anal. Chem., 1997, 69, 4939-4947.

    42.B. König and M. Grätzel, “Long-term stability and improved reusability of a piezoelectric immunosensor for human erythrocytes”, Anal. Chim. Acta, 1992, 280, 37-41.

    43.C. Berggren and G. Johansson, “Capacitance Measurements of Antibody- Antigen Interactions in a Flow System”, Anal. Chem., 1997, 69, 3651- 3657.

    44.A. L. Newman, K. W. Hunter and W. D. Stanbro, “The capacitive affinity sensor, a new biosensor”, Proceedings of the 2nd meeting on chemical sensors, Bordeaux, 1986, pp. 596–598.

    45.T. L. Panasyuk, V. M. Mirsky, A. S. A. Piletsky and O. S. Wolfbeis, “Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors”, Anal. Chem., 1999, 71, 4609-4613.

    46.J. Matsui, M. Higashi and T. Takeuchi, “Molecularly Imprinted Polymer as 9-Ethyladenine Receptor Having a Porphyrin-Based Recognition Center”, J. Am. Chem. Soc., 2000, 122, 5218-5219.

    47.B. Sellergren, Techniques and Instrumentation in Analytical Chemistry: Molecularly Imprinted Polymers, Vol. 23, Elsevier, Amsterdam, 2001, pp. 126–138.

    48.蔡軒昂,分子模版材料之製備與對肌酸酐之特異性吸附,國立成功大學,博士論文,2005。

    49.陳偉祺,以螢光單體製備分子模版共聚物對肌酸酐吸附之探討,國立成功大學,碩士論文,2005。

    50.陳威志,利用微卡計所得資訊設計肌酸酐分子模版,國立成功大學,碩士論文,2004。

    下載圖示 校內:2009-07-20公開
    校外:2009-07-20公開
    QR CODE