| 研究生: |
謝宗霖 Hsieh, Tsung-lin |
|---|---|
| 論文名稱: |
以兩階段生物整治策略處理受石油碳氫化合物汙染土壤復育之研究 Process Study of Two-stage Bioremediation Strategy in Total Petroleum Hydrocarbon Contaminated Soil |
| 指導教授: |
鄭幸雄
Cheng, Sheng-shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 生物界面活性劑 、生物刺激 、真菌 、生物優植 、生物復育 |
| 外文關鍵詞: | Biosurfactant, Fungi, Bioremediation, Biostimulation, Bioaugmentation |
| 相關次數: | 點閱:110 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長期受總石油碳氫化合物(TPH)汙染之土壤,在生物復育過程中往往面臨殘餘濃度過高、復育時間過長等問題,原因係降解過程中發生遲滯現象,且無法藉自然的程序進行第二階段降解的反應。本研究目的係針對長期受總石油碳氫化合物汙染之土壤,建立兩階段生物整治策略,縮短生物降解遲滯時間,並快速推進第二階段降解,達到殘餘濃度去除的目的。
為了達到此目的,本研究係以初始濃度14,032 mg/kg dry soil之長期汙染土壤,結合生物菌劑及助劑於生物降解策略做降解最佳化探討,即於此TPH汙染土壤中添加108 CFU/g dry soil的五株優菌株,配合濃度100 mg/kg soil之生物界面活性劑rhamnolipid (A8R100),可以在35天達到第一階段降解,去除率高達70%。至於各組降解遲滯的問題則與汙染物三成份中極性物質的累積有關,在累積過程中真菌類多樣性的增加,有助於極性物質的去除,最後細菌類與真菌類共生的環境能使汙染物產生第二階段的降解反應,因此汙染物能持續降解。
由實驗室多重土堆生物整治結果,設計一套兩階段整治策略程序,以A8R100策略促進第一階段汙染物的降解,當TPH遲滯現象發生時則輔以真菌類多樣性之策略來增加極性物質的降解,可縮短遲滯期的時間。結果發現,以A8R100應用在兩階段生物復育程序,確實能將初始濃度7,379 mg/kg dry soil之土壤,在21天內達到第一階降解(去除率為65%);再於第二階段添加優植油解真菌能將去除率提昇至87%,單以酵母菌的優植方式也可以達到89%的去除效果,而以添加廚餘堆肥的策略,更能將汙染物提升到89%以上。以此兩階段的組合於三個月內即能達到汙染物低於法規標準1,000 mg/kg dry soil,藉由優植真菌及廚餘堆肥的策略才能減少遲滯現象的發生,並快速達到汙染物降解的目的。
Soils which are long term contaminated with petroleum hydrocarbons usually encountered with problems of high residual concentrations and usually require a relatively long remediation time. The reason can be the lag phase observed during the remediation course, as well as the difficulty of natural TPH degradation during the second-stage remediation process.
The objective of this study was to establish a two-stage bioremediation strategy to remediate an aged hydrocarbon-contaminated soil. The purpose of the strategy was to reduce the time taken for the 1st-stage degradation, and to efficiently transfer the system to the 2nd–stage, with the purpose of achieving the remediation goal and improving the problem of the residual concentrations.
The soil contaminated by 14,032 mg total petroleum hydrocarbon (TPH) /kg dry soil was employed in the study to find an optimal bioremediation approach. The bioremediation approach of combined bioaugmentation and biosurfactant, with introduction of five strains bacteria of 108 CFU/g dry soil and 100 mg/kg soil of rhamnolipid (A8R100), reached the first stage of degradation in 35 days and removal efficiency of 70%. The problem of slow TPH degradation found to be related to the polar fractions accumulation. Increase of fungi community diversity was found helpful in decomposition of the polar fractions. The symbiotic environment between bacteria and fungi was beneficial to the 2nd –stage TPH biodegradation.
Based on the above findings, we designed a two-stage remediation strategy, by using the A8R100 approach during the 1st stage. Then, when TPH was persistent to be further degraded, we enhanced the fungi diversity in the remediation system in order to shorten the lag phase and to improve the degradability particularly for the polar substances. Our result indicated that, with the A8R100 approach, the soil initially contaminated with 7,379 mg TPH/kg dry soil could complete the 1st – stage degradation by the 1st 21 days, and the removal efficiency was 65%. We then added hydrocarbon degrading fungi and yeast in the second-stage, and the removal efficiency was raised to be 87% and 89%, respectively. When the compost kitchen waste (KW) strategy was employed, the TPH removal efficiency was higher than 89%.
The two-stage bioremediation strategy could help us to attain the Taiwan Soil and Groundwater Remediation Regulation, TPH lower than 1,000 mg/kg dry soil, within three months. The application of fungi and kitchen waste found to be useful in shorten the lag phase during the 2nd-stage degradation and achieve the remediation goal efficiently.
Ang, C. C. and Abdul, A. S., Aqueous Surfactant Washing of Residual Oil Contamination from Sandy Soil. Ground Water Monitoring and Remediation 11(2): 121-127(1991).
April, T. M., Abbott, S. P., Foght, J. M. and Currah, R. S., Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Canadian Journal of Microbiology 44(3): 270-278(1998).
Atlas, R. M., Microbial-Degradation of Petroleum-Hydrocarbons - an Environmental Perspective. Microbiological Reviews 45(1): 180-209(1981).
Atlas, R. M., Petroleum Miceobiology. Macmillan Publishing Company New York(1984).
Atlas, R. M., Anassessment of the biodegradation of pertoleum in the Arctic. Microbial Ecology, Springer-Verlag,Berlin: 86-90(1987).
Atlas, R. M., Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin 31(4-12): 178-182(1995).
Banat, I. M., Makkar, R. S. and Cameotra, S. S., Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology 53(5): 495-508(2000).
Bento, F. M. and Gaylarde, C. C., Biodeterioration of stored diesel oil: studies in Brazil. International Biodeterioration & Biodegradation 47(2): 107-112(2001).
Bidlan, R. and Manonmani, H. K., Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochemistry 38(1): 49-56(2002).
Bossert, I and Bartha, R, The fate of petroleum in soil ecosystems. In: Atlas RM (Ed.). Petroleum Microbiology Macmillan Publishing Company, New York: 435-476(1984).
Chaîneau, C.H., Morel, J. , Dupont, J., Bury, E. and Oudot, J., Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. The Science of the Total Environment 227(2-3): 237-247(1999).
Chaîneau, C.H., Rougeux, G., Yéprémian, C. and Oudot, J., Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry 37(8): 1490-1497(2005).
Chaillan, F., Chaîneau, C.H., Point, V., Saliot, A. and Oudot, J., Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environmental Pollution 144(1): 255-265(2006).
Chaillan, F., Gugger, M., Saliot, A., CoutÃÃ, A. and Oudot, J., Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62(10): 1574-1582(2006).
Chaillan, Frédéric, Le Flèche, Anne, Bury, Edith, Phantavong, Y-hui, Grimont, Patrick, Saliot, Alain and Oudot, Jean, Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology 155(7): 587-595(2004).
Chaineau, C. H., Morel, J.-L. and Oudot, J., Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 33(3): 145A(1996).
Chaineau, C. H., Morel, J. L. and Oudot, J., Microbial-Degradation in Soil Microcosms of Fuel-Oil Hydrocarbons from Drilling Cuttings. Environmental Science & Technology 29(6): 1615-1621(1995).
Colwell, RR and Walker, JD, Ecological aspects of microbial degradation of petro leum in the marine environment. CRC critical reviews in microbiology 15: 423-445(1977).
Cooper, DG and Zajic, JE, Surface-active compounds from microorganisms. Advances in applied microbiology 26: 229-253(1980).
EPA, US, Aerobic Biodegradation of Oily Wastes A Field Guidance Book For Federal On-scene Coordinators. (2003).
Gadd, G.M., Fungi in Bioremediation. Cambridge University Press New York: 79-93(2001).
Gilgado, F., Cano, J., Gene, J. and Guarro, J., Molecular phylogeny of the Pseudallescheria boydii species complex: Proposal of two new species. Journal of Clinical Microbiology 43(10): 4930-4942(2005).
Herman, D. C., Artiola, J. F. and Miller, R. M., Removal of Cadmium, Lead, and Zinc Fron Soil by a Rhamnolipid Biosurfactant. Environmental Science & Technology 29(9): 2280-2285(1995).
Kanga, S. A., Bonner, J. S., Page, C. A., Mllls, M. A. and Autenrieth, R. L., Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environmental Science & Technology 31(2): 556-561(1997).
Leahy, J. G. and Colwell, R. R., Microbial-Degradation of Hydrocarbons in the Environment. Microbiological Reviews 54(3): 305-315(1990).
Lee, Sang-Hwan, Lee, Seokho, Kim, Dae-Yeon and Kim, Jeong-gyu, Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials 143(1-2): 65-72(2007).
Lee, Sunggyu and Cutright, Teresa, Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Journal of Cleaner Production 3(4): 255(1995).
Mancera-Lopez M.E., Esparza-Garcia F. , Chavez-Gomez B., Rodriguez-Vazquez R. , Saucedo-Castaneda G. and Barrera-Cortes J. , Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Biodeterioration & Biodegradation 61: 151-160(2008).
Marin, J. A., Hernandez, T. and Garcia, C., Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environmental Research 98(2): 185-195(2005).
Menzie, C. A., Potocki, B. B. and Santodonato, J., Exposure to Carcinogenic Pahs in the Environment. Environmental Science & Technology 26(7): 1278-1284(1992).
Namkoong, W., Hwang, E. Y., Park, J. S. and Choi, J. Y., Bioremediation of diesel-contaminated soil with composting. Environmental Pollution 119(1): 23-31(2002).
Ollivier, Bernard and Magot, Michel, Petroleum Microbiology. American Society for Microbiology Washington: 261-262,322-323(2005).
Ortega-Calvo, J. J., Lahlou, M. and Saiz-Jimenez, C., Effect of organic matter and clays on the biodegradation of phenanthrene in soils. International Biodeterioration & Biodegradation 40(2-4): 101-106(1997).
Oudot J, Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Res 13: 277-302(1984).
Pacheco, Adriana de O., Kagohara, Edna, Andrade, Leandro H., Comasseto, João V., Crusius, Iracema H.-S., Paula, Claudete R. and Porto, André L.M., Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (Candida guilliermondii). Enzyme and Microbial Technology 42(1): 65-69(2007).
Perfumo, A., Banat, I. M., Marchant, R. and Vezzulli, L., Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66(1): 179-184(2007).
Providenti, M. A., Lee, H. and Trevors, J. T., Selected Factors Limiting the Microbial-Degradation of Recalcitrant Compounds. Journal of Industrial Microbiology 12(6): 379-395(1993).
Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R. and Banat, I. M., Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology 90(2): 159-168(2003).
Reid, B. J., Jones, K. C. and Semple, K. T., Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment. Environmental Pollution 108(1): 103-112(2000).
Robert, E., Hinchee, Jim, Fredrickson and Bruce, C., Alleman, Bioaugmentation for Site Remediation. Battele Memorial Institute Columbus: 5-6(1995).
Roling, W. F. M., Milner, M. G., Jones, D. M., Fratepietro, F., Swannell, R. P. J., Daniel, F. and Head, I. M., Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Applied and Environmental Microbiology 70(5): 2603-2613(2004).
Semple, K. T., Cain, R. B. and Schmidt, S., Biodegradation of aromatic compounds by microalgae. Fems Microbiology Letters 170(2): 291-300(1999).
Taylor, L.T. and Jones, D.M., Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44(5): 1131-1136(2001).
Van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M. and Witholt, B., Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology-Revue De L Institut Francais Du Petrole 58(4): 427-440(2003).
Vandyke, M. I., Couture, P., Brauer, M., Lee, H. and Trevors, J. T., Pseudomonas-Aeruginosa Ug2 Rhamnolipid Biosurfactants - Structural Characterization and Their Use in Removing Hydrophobic Compounds from Soil. Canadian Journal of Microbiology 39(11): 1071-1078(1993).
Venosa, Albert D. and Zhu, Xueqing, Biodegradation of Crude Oil Contaminating Marine Shorelines and Freshwater Wetlands. Spill Science and Technology Bulletin 8(2): 163-178(2003).
Zhang, Y. M. and Miller, R. M., Enhanced Octadecane Dispersion and Biodegradation by a Pseudomonas Rhamnolipid Surfactant (Biosurfactant). Applied and Environmental Microbiology 58(10): 3276-3282(1992).
Zinjarde, S. S. and Pant, A. A., Hydrocarbon degraders from tropical marine environments. Marine Pollution Bulletin 44(2): 118-121(2002).
陳振鐸,基本土壤學,財團法人徐世基金會,台北縣(1998)
郭魁士,土壤學,中國書局,台北縣(1997)
謝俊雄,石油化學工業,新文京開發,台北縣(2002)
許長春等,劉振鵬,石油煉製原理與實務,中國石油(2003)
曹明,六十年來之中國石油公司,石油通訊編輯委員會(2006)
萬鑫森譯,國立編譯館主編,基礎土壤物理學,茂昌圖書(1987)
胡興中,石油化學,高立圖書(1991)
柯清水,石油化學概論,正文書局(1970)
王一雄,陳尊賢,土壤污染學,國立中央圖書館出版(1995)
何信恩,利用熱蒸氣注入/真空萃取技術現地整治受柴油污染土壤之最佳操作條件研究,國立中山大學環境工程研究所碩士論文(1994)
馬志強,應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率,國立成功大學環境工程學系(所)碩士論文(2005)
張長泉、鄭幸雄、林妙珠、魏郁芳、鄭竹逸,用於檢測綠膿桿菌之寡核苷酸探針、生物晶片及其檢測方法,中華民國專利(2007)
曾依蕾,柴油降解菌組合的最佳化,國立成功大學環境工程學系(所)碩士論文 (2005)
廖翊廷,應用生物刺激及菌種添加之離場土耕法整治總石油碳氫化合物污染土壤之模場研究,國立成功大學環境工程學系(所)碩士論文(2007)
潘柏岑,應用土耕法配合生物添加促進法整治柴油污染土壤之研究,國立成功大學環境工程學系(所)碩士論文(2006)
蔡在唐、胡太龢、陳忠勳、葉宗裕、高志明,評估以加強式生物處理整治受燃料油污染土壤之成效,土壤與地下水研討會(2006)
鄭幸雄、潘柏岑、廖翊廷、劉保文、黃良銘,應用生物界面活性劑促進柴油污染土壤生物復育之可行性評估及現場驗證,土壤與地下水研討會(2006)
鄭幸雄、黃良銘、潘柏岑、廖翊廷、高俊璿,受不同比例之柴油與燃料油污染土壤之生物降解探討,環工年會-土壤與地下水研討會(2007)
高俊璿,高濃度石化油汙染土壤之不同微生物降解三類石油碳氫化合物研究,國立成功大學環境工程學系(所)碩士論文(2008)
鄭幸雄、潘柏岑、高俊璿、謝宗霖、黃良銘、張長泉,油汙壤土壤於微生物降解石油碳氫化合物中Aliohatics、Aromatics與Polar fractions三大類族群之研究,環工年會-土壤與地下水研討會(2008)
鄭幸雄、謝宗霖、潘柏岑、高俊璿、黃良銘,應用本土生物菌劑與助劑整治長期受石油碳氫化合物汙染土壤生物復育之研究,環工年會-土壤與地下水研討會(2008)