簡易檢索 / 詳目顯示

研究生: 許正道
Hsu, Cheng-Dao
論文名稱: 以考慮應力偶和厚度伸張效應之尺度相關剪力變形歸一理論分析功能性微板在磁電焦彈耦合荷載作用下之自由振動特性
A Unified Size-Dependent Shear Deformation Theory for Analyzing the Free Vibration Characteristics of Functionally Graded Microplates Subjected to Magneto-Electro-Thermo-Mechanical Loads Considering Couple Stress and Thickness Stretching Effects
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 76
中文關鍵詞: 協合應力偶理論磁電焦彈耦合效應自由振動功能性微板尺度相關剪力變形歸一理論
外文關鍵詞: consistent couple stress theory, free vibration, functionally graded magneto-electro-elastic microplates, size-dependent, couple stress effects, thickness stretching effects
相關次數: 點閱:16下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於協合應力偶理論(Consistent couple stress theory , CCST),發展出一套尺度相關之剪力變形歸一理論,對功能性磁電彈性(Functionally graded magneto-electro-elastic , FG-MEE)微板在完全剪支撐邊界條件下,受電位勢、磁位勢、均勻溫度變化與雙軸壓力變化作用時的自由振動特性進行分析。此理論同時考慮應力偶與厚度伸展效應,並可透過指定厚度方向之剪力變形的形狀函數,重建出各種基於 CCST 的尺度效應理論,包括了尺度相關古典板理論、一階剪力變形板理論、Reddy的優化剪力變形板理論、正弦剪力變形板理論、指數剪力變形板理論與雙曲線剪力變形板理論,並使用此歸一理論來分析簡支撐功能性磁電彈性微板的固有頻率及振動模態。為驗證此歸一理論之準確性,本文將其解與文獻中發表之三維解析解進行比對,並進一步分析不同的幾何參數與材料參數對微板的固有頻率之影響,所考慮到的參數包含了厚度伸展效應、材料尺度參數、長厚比、材料性質梯度因子、電壓值、磁場值、均勻溫度之變化、雙軸壓力。透過對參數進行分析,微板的固有頻率對外加荷載形式極為敏感,當磁、電、熱或機械荷載引致初始拉應力或初始壓應力時,將導致系統頻率上升或下降,顯示磁電焦彈耦合荷載作用對微板固有頻率具顯著影響。

    This study develops a unified size-dependent shear deformation theory based on the Consistent Couple Stress Theory (CCST) to investigate the free vibration characteristics of functionally graded magneto-electro-elastic (FG-MEE) microplates subjected to electric potential, magnetic potential, uniform temperature change, and bi-axial mechanical loads under fully simply supported boundary conditions. The proposed model incorporates both couple stress effects and thickness stretching effects, and allows for the reconstruction of various CCST-based size-dependent plate theories by specifying the shear deformation shape functions along the thickness direction, including the size-dependent classical plate theory, first-order shear deformation theory, Reddy’s refined shear deformation theory, as well as sinusoidal, exponential, and hyperbolic shear deformation theories. The unified model is employed to compute the natural frequencies and mode shapes of simply supported FG-MEE microplates, and its accuracy is validated through comparison with three-dimensional analytical solutions reported in the literature. A comprehensive parametric study is conducted to examine the influence of thickness stretching, material length scale parameter, aspect ratio, material gradient index, applied electric and magnetic fields, uniform temperature variation, and bi-axial mechanical loads on the vibrational behavior. The results reveal that the natural frequencies of the microplates are significantly affected by the nature of the applied loads, which may induce initial tensile or compressive stresses, leading to either frequency stiffening or softening, thereby highlighting the critical role of magneto-electro-thermal-mechanical loading conditions in the dynamic response of FG-MEE microstructures.

    中文摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅷ 目錄 Ⅸ 表目錄 Ⅺ 圖目錄 Ⅻ 符號說明 XIII 第一章 緒論 1 第二章 理論公式 5 2-1 運動學模型與相關控制方程式 5 2-2 本構方程式 8 2-3 強形式 9 第三章 應用 16 第四章 數值範例 21 4-1 驗證與比較 21 4-1.1 功能性壓電微板 21 4-1.2 功能性磁電彈性宏觀板 23 4-2 參數研究 24 4-2.1 開路表面條件下無加載之功能性磁電彈性微板 24 4-2.2 閉路表面條件下加載之功能性磁電彈性微板 25 第五章 結論 26 參考文獻 27 附錄A 33 附錄B 38 附錄C 40 附錄D 44

    [1] S. Suresh; A. Mortensen. Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites. IOM Communications Ltd, 1998.
    [2] M. Koizumi. FGM activities in Japan. Compos. Part B, 28:1–4, 1997.
    [3] M. Koizumi. Recent progress of functionally graded materials in Japan. Cream. Eng. Sci. Proc., 13:333–347, 1992.
    [4] K. Piper; V. Agrawal. Ductile fracture in functionally graded materials: Insight into crack behavior within the gradient interface. arXiv preprint arXiv:2411.18642, 2024.
    [5] M. Naebe; K. Shirvanimoghaddam. Functionally graded materials: A review of fabrication and properties. Appl. Mater. Today, 5:223–245, 2016.
    [6] Y. Liu; Z. Wu; W. Liu; Y. Ma; X. Zhang; L. Zhao; K. Yang; Y. Chen; Q. Cai; Y. Song; C.P. Liang. Microstructure evolution and reaction mechanism of continuously compositionally Ti/Al intermetallic graded material fabricated by laser powder deposition. J. Mater. Res. Technol., 21:4173–4185, 2022.
    [7] G.M. Naik; H.S. Hebbar; R.M. Shetty. Fabrication and characterization of functionally graded material (fgm) structure containing two dissimilar steels (er70s-6 and 308lsi) by wire arc additive manufacturing (waam). Mater. Today Proc., 68:1996–2001, 2022.
    [8] A. Kruth; Y. Chen; P.J. Withers. Synchrotron-based high-energy x-ray diffraction and microdiffraction investigations on the mechanical heterogeneity of heterostructured metals. Mater. Sci. Eng. A, 850:142780, 2022.
    [9] G.M. Naik; H.S. Hebbar; R.M. Shetty. Fabrication and characterization of functionally graded material (fgm) structure containing two dissimilar steels (er70s-6 and 308lsi) by wire arc additive manufacturing (waam). Mater. Today Proc., 68:1996–2001, 2022.
    [10] A. Kruth; Y. Chen; P.J. Withers. Synchrotron-based high-energy x-ray diffraction and microdiffraction investigations on the mechanical heterogeneity of heterostructured metals. Mater. Sci. Eng. A, 850:142780, 2022.
    [11] L. He; D.C. Pagan; A. Nardi; M. Hassani. Synchrotron x-ray diffraction studies of the phase-specific deformation in additively manufactured ni–crc composites. Compos. Part B Eng., 222:109086, 2021.
    [12] H.T. Thai; T.P. Vo; T.K. Nguyen; S.E. Kim. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct., 177:196–219, 2017.
    [13] A.C. Eringen. Nonlocal polar elastic continua. Int. J. Eng. Sci., 10(1):1–16, 1972.
    [14] C.W. Lim; G. Zhang; J.N. Reddy. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids, 78:298–313, 2015.
    [15] J. Wang; J. Liu; B. Hu; B. Zhang; X. Wang; Y. Wang; J. Wang. Wave propagation in functionally graded piezoelectric sandwich nanoplates based on nonlocal strain gradient theory incorporating surface effects. Smart Mater. Struct., 34(1):015026, 2025.
    [16] S. Kong. A review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Methods Eng., 29:1–31, 2022.
    [17] C.P. Wu; E.L. Lin. Free vibration analysis of porous functionally graded piezoelectric microplates resting on an elastic medium subjected to electric voltages. Arch. Mech., 74:463–511, 2022.
    [18] C.P. Wu; Y.A. Lu. A Hermite-family C1 finite layer method for the three-dimensional free vibration analysis of exponentially graded piezoelectric microplates based on the consistent couple stress theory. Int. J. Struct. Stab. Dyn., 23(4):2350044, 2023.
    [19] N.A. Fleck; G.M. Muller; M.F. Ashby; J.W. Hutchinson. Strain gradient plasticity: Theory and experiment. Acta Metall. Mater., 42(2):475–487, 1994.
    [20] H. Gao; Y. Huang; W.D. Nix; J.W. Hutchinson. Mechanism-based strain gradient plasticity - i. theory. J. Mech. Phys. Solids, 47(6):1239–1263, 1999.
    [21] R. Makvandi; S. Duretz; D. Juhre. A phase-field fracture model based on strain gradient elasticity. Eng. Fract. Mech., 218:106608, 2019.
    [22] R. Lakes. Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as cosserat continua. J. Eng. Mater. Technol., 113(2):148–155, 1991.
    [23] E. Carrera; V.V. Zozulya. Carrera unified formulation (CUF) for the micropolar plates and shells. i. higher order theory. Mech. Adv. Mater. Struct., 29:773–795, 2022.
    [24] S. Hassanpour; G.R. Heppler. Micropolar elasticity theory: A survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids, 22:1–19, 2015.
    [25] U. Gul; M. Aydogdu. Structural modelling of nanorods and nanobeams using doublet mechanics theory. Int. J. Mech. Mater. Des., 14:195–212, 2018.
    [26] A. Karamanli. Structural behaviors of zigzag and armchair nanobeams using finite element mechanics. Eur. J. Mech. A/Solids, 89:104287, 2021.
    [27] J.N. Reddy. Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids, 59(11):2382–2399, 2011.
    [28] F. Yang; A.C.M. Chong; D.C.C. Lam; P. Tong. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct., 39(10):2731–2743, 2002.
    [29] L.C. Trinh; H.X. Nguyen; T.P. Vo; T.K. Nguyen. Size-dependent behavior of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory. Compos. Struct., 134:556–572, 2016.
    [30] H. Liu; Q. Zhang. Nonlinear dynamics of two-directional functionally graded microbeam with geometrical imperfection using unified shear deformable beam theory. Appl. Math. Modell., 98:783–800, 2021.
    [31] Z. Li; H. Wang; S. Zheng. Bending and free vibration of functionally graded piezoelectric microbeams based on the modified couple stress theory. Ann. Solid Struct. Mech., 10:1–16, 2018.
    [32] J. Lou; L. He; J. Du. A unified higher order plate theory for functionally graded microplates based on the modified couple stress theory. Compos. Struct., 133:1036–1047, 2015.
    [33] V.T. Tran; T.K. Nguyen; P.T.T. Nguyen; T.P. Vo. Stochastic vibration and buckling analysis of functionally graded microplates with a unified higher-order shear deformation theory. Thin-Walled Struct., 177:109473, 2022.
    [34] C.P. Wu; Z. Huang. A unified consistent couple stress beam theory for functionally graded microscale beams. Steel Compos. Struct., 51:103-116, 2024.
    [35] M. Ghadiri; H. Safarpour. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl. Phys. A, 122:833, 2016.
    [36] E. Pan; F. Han. Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci., 43(11-12):874-886, 2005.
    [37] Y.H. Tsai; C.P. Wu. Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci., 46(8):843-857, 2008.
    [38] R. Garcia Lage; C.M. Mota Soares; C.A. Mota Soares; J.N. Reddy. Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Comput. Struct., 82(23-26):2081-2091, 2004.
    [39] A.R. Hadjesfandiari. Size-dependent piezoelectricity. Int. J. Solids Struct., 50:2781-2791, 2013.
    [40] C.P. Wu; Y.A. Lu. A Hermite-family c1 finite layer method for the three-dimensional free vibration analysis of exponentially graded piezoelectric microplates based on the consistent couple stress theory. Int. J. Struct. Stab. Dyn., 23:2350044, 2023.
    [41] C.P. Wu; Y.C. Lu. A modified pagano method for the 3d dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct., 90:363-372, 2009.
    [42] Y.H. Tsai; C.P. Wu. Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci., 46:843-857, 2008.
    [43] F. Ramirez; P.R. Heyliger; E. Pan. Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct., 13:249-266, 2006.
    [44] Z. Zhong; T. Yu. Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart Mater. Struct., 15:1404-1412, 2016.
    [45] J. Chen; H. Chen; E. Pan; P.R. Heyliger. Modal analysis of magneto-electro-elastic plates. J. Sound Vibr., 304:722-734, 2007.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE