簡易檢索 / 詳目顯示

研究生: 蔡瀞儀
Tsai, Ching-yi
論文名稱: 利用逆微胞自組裝技術製備銀奈米線
Fabrication of Silver Nanowires Using Self-Assembled Reverse Micelle Template at Controlled Low Temperature
指導教授: 劉瑞祥
Liu, Jui-hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 97
中文關鍵詞: 自組裝銀奈米線逆微胞
外文關鍵詞: reverse micelle, silver nanowire, self-assembly
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用兩性分子結合逆微胞技術製備銀奈米線。所使用的兩性分子包含小分子界面活性劑和兩性嵌段共聚合物。在小分子界面活性劑部分,以逆微胞技術製備銀奈米粒子,並藉由逆微胞外圍界面活性劑長碳鏈段間的凡得瓦力作用,在適當條件下可自組裝成銀奈米管,由於奈米級銀粒子具有低熔點之特性,故自組裝的銀奈米管可於低溫下燒結得到銀奈米線。以octanoic acid 和甲基丙烯酸甲酯作為界面活性劑及有機相,硝酸銀和硼氫化鈉為銀奈米粒子的前驅物和還原劑,藉由改變水和界面活性劑的莫耳比 (w)、硝酸銀水溶液的濃度及不同的有機相,探討不同變因對銀奈米粒子自組裝行為的影響。
    研究中兩嵌段共聚物以原子轉移自由基聚合法成功合成。由於兩性嵌段共聚物兩鏈段親疏水性質之差異,亦可藉由逆微胞技術製備分散良好的銀奈米粒子。研究中更進一步以多孔性氧化鋁 (AAO) 為模板,在不同的燒結加工操作條件下,製備不同長度的銀奈米線。燒結加工過程可分為兩種不同製程,若將銀奈米粒子填充入AAO模板中,直接燒結後移除模板,可製備較短的銀奈米線。若將銀奈米粒子、甲基丙烯酸甲酯及光起始劑填充入AAO模板,照UV光聚合固定銀奈米粒子,形成聚合物-奈米銀複合材料,經燒結後可製備出較長的銀奈米線。

    Silver nanowires were fabricated by surfactant and diblock copolymer via a reverse micelle technique. In case of low molecular weight surfactant, silver nanoparticles self-assembled into nanotubes under proper conditions due to the secondary forces such as Van der Waals force and polar-polar interactions between reverse micelles. The melting point of the fabricated silver nanoparticles was found to be reduced to 115 oC. Silver nanotubes were sintered into nanowires at a controlled low temperature. In a low molecular weight surfactant system, methyl methacrylate (MMA) and octanoic acid were used as organic phase and surfactant, respectively. Effects of surfactant concentration, nanoparticle amount, and organic phases on the formation of self-assembly were studied. Furthermore, in order to investigate the possibility of the fabrication of silver nanowires using polymer surfactant, a diblock copolymer was synthesized through an ATRP polymerization. Silver nanoparticles were prepared using the diblock copolymer as a surfactant. The fabricated silver nanoparticles were mixed with MMA and photoinitiator, and then filled into pores of the anodic aluminium oxide membrane (AAO). After UV irradiation and the removal of AAO template, silver nanoparticle embedded polymer fibers were fabricated. Sintering the cured AAO film at 500 oC produced long length silver nanowires. Additionally, sintering of silver nanoparticles filled in AAO template produced short silver nanowires. This investigation demonstrates the fabrication of silver nanowires of a controlled length at a controlled low temperature.

    Contents Abstract -------------------------------------------------I Acknowledgements ---------------------------------------III Contents ------------------------------------------------IV List of Schemes ----------------------------------------VII List of Tables ----------------------------------------VIII List of Figures -----------------------------------------IX Chapter 1 Preface ----------------------------------------1 1-1 Introduction of nanomaterial -------------------------1 1-2 Microfabrication -------------------------------------2 1-3 Research motivation ----------------------------------4 Chapter 2 General introduction and theoretical background-5 2-1 Self-assembly ----------------------------------------5 2-1-1 Definition of self-assembly ------------------------5 2-1-2 Self-assembly of amphiphilic molecules -------------5 2-1-2-1 Surfactants: packing-directed self-assembly ------6 2-1-2-2 Amphiphilic block copolymer assembly -------------8 2-2 Synthesis of amphiphilic diblock copolymer ----------10 2-2-1 Controlled/“living” free radical polymerization (CRP) ---------------------------------------------------10 2-2-2 Atom transfer radical polymerization (ATRP) -------12 2-2-3 Synthesis of a series of methacrylates by atom transfer radical polymerization (ATRP) ------------------14 2-3 Synthesis of silver nanoparticles -------------------16 2-3-1 Synthesis of silver nanoparticles by reverse micelle method --------------------------------------------------16 2-3-1-1 Introduction of reverse micelle -----------------17 2-3-1-2 Reaction dynamics in reverse micelle ------------18 2-3-1-3 Synthesis of silver nanoparticles by surfactant reverse micelles ----------------------------------------19 2-3-1-4 Synthesis of metal nanoparticles by block copolymer micelles ---------------------------------------21 2-4 Self-assembly of silver nanoparticles ---------------24 2-5 Low-temperature sintering characterization of silver nanoparticles -------------------------------------------27 2-6 Fabrication of silver nanowires ---------------------29 2-7 Silver nanoparticles embedded within polymer fibers-------------------------------------------------------------34 Chapter 3 Experimental ----------------------------------38 3-1 Materials -------------------------------------------38 3-2 Measurements ----------------------------------------39 3-3 Fabrication of silver nanowires using low molecular weight surfactant ---------------------------------------41 3-3-1 Preparation of silver nanoparticles and formation of silver nanotubes by reverse micelle method --------------41 3-3-2 Sintering process ---------------------------------43 3-4 Fabrication of silver nanowires using diblock copolymer------------------------------------------------43 3-4-1 Purification --------------------------------------44 3-4-2 Synthesis of diblock copolymers by ATRP -----------44 3-4-2-1 Synthesis of macro-initiator --------------------45 3-4-2-2 Synthesis of diblock copolymer -----------------46 3-4-2-3 Hydrolysis -------------------------------------46 3-4-3 Preparation of silver nanoparticles by reverse micelle method -----------------------------------------47 3-4-4 Preparation of silver nanoparticle embedded polymer fibers by AAO template ---------------------------------48 3-4-5 Sintering process --------------------------------49 Chapter 4 Results and discussion -----------------------50 4-1 Fabrication of silver nanoparticles by reverse micelle method -------------------------------------------------50 4-2 Fabrication of silver nanowires using low molecular weight surfactant --------------------------------------51 4-2-1 Effect of the factor w on the formation of silver nanotubes ----------------------------------------------51 4-2-2 Effect of the organic phase on the formation of silver nanotubes ---------------------------------------57 4-2-3 Effect of the concentration on the formation of silver nanotubes ---------------------------------------60 4-2-4 Mechanism for the formation of silver nanotubes --63 4-2-5 Sintering process --------------------------------69 4-3 Fabrication of silver nanowires using diblock copolymer ----------------------------------------------75 4-3-1 Synthesis and characterization of diblock copolymers ---------------------------------------------75 4-3-2 Thermal resistance of diblock copolymers ---------80 4-3-3 Fabrication of silver nanoparticles by diblock copolymer reverse micelles -----------------------------82 4-3-4 Silver nanoparticles embedded within polymer fibers----------------------------------------------------------84 4-3-5 Fabrication of silver nanowires of a controlled length through different controlled conditions ---------85 Chapter 5 Conclusions ----------------------------------90 Chapter 6 References -----------------------------------91 Appendix ---------------------------------------------- 97

    [1] Poole, C. P.; Owens, F. J. Introduction to Nanotechnology, Wiley: Hoboken, 2003.
    [2] (a) Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Nature 2004, 430, 704. (b) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. (c) Tao, A. R.; Yang, P. J. Phys. Chem. B 2005, 109, 15687.
    [3] (a) Zhang, Z.; Sun, X.; Dresselhaus, M. S.; Ying, J. Y. Phys. Rev. B 2000, 61, 4850. (b) Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120.
    [4] (a) Hu, X.; Chan, C. T. Appl. Phys. Lett. 2004, 85, 1520. (b) Chimentao, R. J.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E. Chem. Commun. 2004, 846.
    [5] Wolfson, H.; Elliott, G. Electrically Conducting Cements Containing Epoxy Resins and Silver. U.S. Patent 2, 774, 747, 1956.
    [6] (a) Li, Y.; Moon, K.; Wong, C. P. Science 2005, 308, 1419. (b) Kim, J. M.; Yasuda, K.; Fujimoto, K. J. Electron. Mater. 2005, 34, 600.
    [7] (a) Whiteside, G. M.; Grzybowski, B. Science 2002, 295, 2418. (b) Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
    [8] Huck, Wilhelm T. S. Nanoscale Assembly: Chemical Techniques, Springer-Verlag: New York, 2005.
    [9] Wang, D.; Möhwald, H. J. Mater. Chem. 2004, 14, 459.
    [10] Robinson, B. H. Self-Assembly, IOS Press; Amsterdam, 2003
    [11] Zhang, J. Z. Self-Assembled Nanostructures, Kluwer Academic/Plenum Publishers; New York, 2003.
    [12] Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.
    [13] Abetz, V. Block Copolymers, Springer-Verlag; Berlin, 2005.
    [14] Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. J. Am. Chem. Soc. 2005, 127, 5036.
    [15] Szwarc, M. Carbanions, Living Polymers and Electron-Transfer Process, Wiley-Interscience; New York, 1968.
    [16] Matyjaszewski, K. Cationic Polymerizations: Mechanisms, Synthesis and Applications, New York; Marcle Dekker, 1996.
    [17] Ivin, K. J.; Mol, G. S. Olefin Metathesis and Metathesis Polymerization, Academic Press; London, 1996.
    [18] Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921.
    [19] Matyjaszewski, K.; Tsarevsky, N. V. Chem. Rev. 2007, 107, 2270.
    [20] (a) Matyjaszewski, K.; Wang, J. L.; Grimaud, T. Macromolecules 1997, 30, 6507. (b) Matyjaszewski, K.; Shipp, D. A.; Wang, J. L. Macromolecules 1998, 31, 8005.
    [21] (a) Ito, H.; Ueda, M. Macromolecules, 1988, 21, 1475. (b) Ramireddy, C.; Tuzar, Z.; ProchBzka, K.; Webber, S. E.; Munk, P. Macromolecules, 1992, 25, 2541.
    [22] Zhang, X.; Xia, J.; Matyjaszewski, K. Poly. Prepr. (Am. Chem.Soc., Div. Polym. Chem.) 1999, 40, 440.
    [23] Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulji, D.; Shooter, A. J. Macromolecules 1999, 32, 2110.
    [24] Karanam, S.; Goossens, H.; Klumperman, B.; Lemstra, P. Macromolecules 2003, 36, 3051.
    [25] Zhang, Z. Q.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E.; Aikens, P. A. J. Phys. Chem. B 2000, 104, 1176.
    [26] Xue, B.; Chen, P.; Hong, O.; Lin, J. Y.; Tan, K. L. J. Mater. Chem. 2001, 11, 2378.
    [27] Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Langmuir 2001, 17, 6000.
    [28] Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M. I.; Kumar, R.; Sastry, M. Colloids Surf. B 2003, 28, 313.
    [29] Andersson, M.; Alfredsson, V.; Kjellin, P.; Palmqvist, A. Nano Lett. 2002, 2, 1403.
    [30] Lisiecki, I.; Pileni, M. P. Langmuir 2003, 19, 9486.
    [31] Taleb, A.; Petit, C.; Pileni, M. P. Chem. Mater. 1997, 9, 950.
    [32](a) Liveri, V. T. Controlled Synthesis of Nanoparticles in Microheterogeneous Systems, Springer; New York, 2006. (b) Liz-Marzán L. M.; Kamat, P. V. Nanoscale Materials, Kluwer Academic Publishers; Boston, 2003.
    [33] Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Chem. Rev. 2004, 104, 3893.
    [34] (a) Zoltan, A. S. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 305. (b) Zhijun, H.; Alain, M. J.; Sunil, K. V.; Jean-Francüois, G. J. Am. Chem. Soc. 2005, 127, 6526. (c) Shen, H.; Eisenberg, A. Macromolecules 2000, 33, 2561.
    [35] (a) Petit, C.; Lixon, P.; Pileni, M. P. J. Phys. Chem. B 1993, 97, 12974. (b) Taleb, A.; Petit, C.; Pileni, M. P. Chem. Mater. 1997, 9, 950.
    [36] Wang, W.; Efrima, S.; Regev, O. Langmuir 1998, 14, 602.
    [37] Bright, R. B.; Musick, M. D.; Natan, M. J. Langmuir 1998, 14, 5695.
    [38] Liz-Marzán, L. M.; Lado-Tourino, I. Langmuir 1996, 12, 3585.
    [39] (a) Barnickel, P.; Wokaun, A. Mol. Phys. 1990, 69, 1. (b) Barnickel, P.; Wokaun, A.; Sager, W.; Eicke, H. F. J. Colloid Interface Sci. 1992, 148, 80.
    [40] Zhang, Z.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E. J. Phys. Chem. B 2000, 104, 1176.
    [41] Andersson, M.; Pedersen, J. S.; Palmqvist, E. C. Langmuir 2005, 21, 11387.
    [42] Alexandridis, P.; Olsson, U.; Lindman, B. Langmuir 1998, 14, 2627.
    [43] Sohn, B. H.; Yoo, S. I.; Seo, B. W.; Yun, S. H.; Park, S. M. J. Am. Chem. Soc. 2001, 123, 12734.
    [44] Sohn, B. H.; Choi, J. M.; Yoo, S. I.; Yun, S. H.; Zin, W. C.; Jung, J. C.; Kanehara, M.; Hirata, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 6368.
    [45] Yin, D.; Horiuchi, S. Chem. Mater. 2005, 17, 463.
    [46] Koh, H. D.; Kang, N. G.; Lee, J. S. Langmuir 2007, 23, 11425.
    [47] Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. 1996, 100, 13904.
    [48] Han, L.; Luo, J.; Kariuki, N. N.; Maye, M. M.; Jones, V. W.; Zhong, C. J. Chem. Mater. 2003, 15, 29.
    [49] Xu, S.; Zhou, H.; Xu, J.; Li, Y. Langmuir 2002, 18, 10503.
    [50] Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237.
    [51] Tan, Y.; Jiang, L.; Li, Y.; Zhu, D. J. Phys. Chem. B 2002, 106, 3131.
    [52] Yu, D.; Yam, V. W. W. J. Phys. Chem. B 2005, 109, 5497.
    [53] Zhang, J.; Han, B.; Liu, M.; Liu, D.; Dong, Z.; Liu, J.; Li, D. J. Phys. Chem. B 2003, 107, 3679.
    [54] Korgel, B. A.; Fitzmaurice, D. Adv. Mater. 1998, 10, 661.
    [55] Jiang, H.; Moon, K. S.; Li, Y.; Wong, C. P. Chem. Mater. 2006, 18, 2969.
    [56] Yang, N.; Aoki, K.; Nagasawa, H. J. Phys. Chem. B 2004, 108, 15027.
    [57] Malandrino, G.; Finocchiaro, S. T.; Fragalà I. L. J. Mater. Chem. 2004, 14, 2726.
    [58] Zhang, S. H.; Xie, Z. X.; Jiang, Z. Y.; Xu, X.; Xiang, J.; Huang, R. B.; Zheng, L. S. Chem. Commun. 2004, 1106.
    [59] Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.
    [60] Besson, S.; Gacoin, T.; Ricolleau, C.; Boilot, J. P. Chem. Commun. 2003, 360.
    [61] Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775.
    [62] (a) Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617. (b) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
    [63] Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
    [64] Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Chem. Mater. 2001, 13, 275.
    [65] Hong, B. H.; Bae, S. C.; Lee, C. W.; Jeong, S.; Kim, K. S. Science 2001, 294, 348.
    [66] Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
    [67] Zhou, Y.; Yu, S. H.; Cui, X. P.; Wang, C. Y.; Chen, Z. Y. Chem. Mater. 1999, 11, 545.
    [68] Maddanimath, T.; Kumar, A.; D’Arcy-Gall, J.; Ganesan, P. G.; Vijayamohananb, K.; Ramanath, G. Chem. Commun. 2005, 1435.
    [69] Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
    [70] Liu, S.; Yue, J.; Gedanken, A. Adv. Mater. 2001, 13, 656.
    [71] Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755.
    [72] Nicolais, L.; Carotenuto, G. Metal-Polymer Nanocomposites, Wiley-Interscience; Hoboken, 2005.
    [73] Wang, X.; Naka, K.; Itoh, H.; Park, S.; Chujo, Y. Chem. Commun. 2002, 1300.
    [74] Drury, A.; Chaure, S.; Kröll, M.; Nicolosi, V.; Chaure, N.; Blau, W. J. Chem. Mater. 2007, 19, 4252.
    [75] Kong, H.; Jang, J. Chem. Commun. 2006, 3010.
    [76] Sandroff, C. J.; Garoff, S.; Leung, K. P. Phys. Lett. 1983, 22, 547.
    [77] Creighton, J. A. Surf. Sci. 1983, 124, 209.
    [78] Moskovits, M.; Suh, J. S. J. Am. Chem. Soc. 1985, 107, 6826.
    [79] Xue, L.; Agarwal, U. S.; Lemstra, P. J. Macromolecules 2002, 35, 8650.
    [80] (a) Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Nano Lett. 2002, 2, 165. (b) Sun, Y. G.; Xia, Y. N. Adv. Mater. 2002, 14, 833.
    [81] Jensen, T.; Kelly, L.; Lazarides, A.; Schatz, G. C. Journal of Cluster Science 1999, 10, 295.
    [82] Ohe, C.; Ando, H.; Sato, N.; Urai, Y.; Yamamoto, M.; Itoh, K. J. Phys. Chem. B 1999, 103, 435.
    [83] (a) Ito, H.; Ueda, M. Macromolecules 1988, 21, 1475. (b) Östmark, E.; Harrisson, S.; Wooley, K. L.; Malmström, E. E. Biomacromolecules 2007, 8, 1138.

    下載圖示 校內:2009-06-23公開
    校外:2009-06-23公開
    QR CODE