| 研究生: |
蘇銘勝 Su, Ming-Sheng |
|---|---|
| 論文名稱: |
電子構裝材料在注模後烘烤中熱機械性質與數學模式之研究 Modeling the Thermo-Mechanical Properties of an EMC During Post-Mold Curing |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | EMC封裝材料 、應力鬆弛 、鬆弛模數 、溫度時間疊合原理 、線性網狀無定形高分子材料 、IC塑膠構裝 、WLF方程式 |
| 外文關鍵詞: | WLF equation, The network of linear amorphous polymer, IC packaging, EMC encapsulating materials, relaxation modulus, Time-temperature Superposition principle, stress relaxation |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
IC塑膠構裝的注模膠封製程(Encapsulating Processes of IC Packaging)中,EMC在模具裡僅初凝固成形,其殘留應力相當大也造成EMC初成形後尺寸相當不穩定,更易於影響後續IC功能測試與可靠度測試,所以必須進行注模後烘烤製程,促使交連反應更趨近於穩定完整,發揮EMC被設計賦予的功能目的和適當的機械性質,而能夠保護IC晶片且構建電子構裝體(IC Packaging)達到穩定的結構。本論文主要針對EMC在注模後烘烤作業中,探討其熱機械性質的發展變化,利用DMA/ TMA和DSC儀器實驗所觀測的熱機械性質數據建構成Maxwell Model的數學模式化,亦即構建出EMC在注模後烘烤中熱機械性質的數學模式的構建方法(Methodology),以方便在IC電子構裝體製程設計之初的工程預估及最後佳烘烤製程的設計。
本實驗結果發現:以較低的烘烤溫度,最終卻能得到較完整較高的彈性模數,顯然欲達成較佳效益的後烘烤結果,必須先了解EMC的聚合反應溫度與材料交連擴散的速率的對應關係。
EMC(Epoxy Molding Compound) is used to encapsulate IC on electronic packaging fields. There are some problems in the thermal process of curing EMC, such as package warpage, poor coplanarity of solder balls or lead, crack damages resulted from residual stress, delamination result from thermal stress… and so on. It is necessary for quality to minimize the warpage and deformation and improve potential damages. By the experiments of curing EMC to get the variants of thermal mechanical properties, we can modeling them by the mathematics equation of viscoelasticity and build up the methodology of modeling EMC. This study is to develop a methodology to calculate the modulus profiles during post-mold cure process and predict the EMC warpage caused by residual stress of incomplete cure and viscous stress during molding.
[01] A. F. LEWIS, M. J. DOYLE, “Effect of Cure on Dynamic Mechanical Properties of an Epoxy Resin,” POLYMER ENGINEERING AND SCIENCE, Vol. 19, No. 10, pp683-686, (1979).
[02] Douglas Adolf and James E. Martin, “Time-Cure Superposition during Cross-Linking,” Macromolecules, Vol. 23, No. 15, pp3700-3704, (1990).
[03] GUY WISANRAKKIT and JOHN K. GILLHAM, “Continuous Heating Transformation ( CHT ) Cure Diagram of an Aromatic Amine/ Epoxy System at Constant Heating Rates,”Journal of Applied Polymer Science, Vol. 42, pp2453-2463, (1991).
[04] S. L. SIMON and J. K. GILLHAM, “Thermosetting Cure Diagrams: Calculation and Application,”Journal of Applied Polymer Science, Vol. 53, pp709-727, (1994).
[05] Jakob Lange and Jan-Anders E. Manson, “Build-up of structure and viscoelastic properties in epoxy and acrylate resins cured below their ultimate glass transition temperature,”Polymer, Vol. 37, pp5859-5868, (1996).
[06] G. WISANRAKKIT and J. K. GILLHAM, “Effect of Physical Annealing on the Dynamic Mechanical Properties of a High-Tg Amine-Cured Epoxy System,” Journal of Applied Polymer Science, Vol. 42, pp2465-2481, (1991).
[07]CRAIG A. BERO and DONALD J. PLAZEK, “Volume-Dependent Rate Processes in an Epoxy Resin,” Journal of Applied Polymer Science: Part B: Polymer Physics, Vol. 29, pp39-47, (1991).
[08]D. J. MICHAUD, A. N. BERIS and P. S. DHURJATI, “CURING BEHAVIOR OF THICK-SECTIONED RTM COMPOSITES,” Journal of Composite Materials, Vol. 32, No. 14. pp1273-1296, (1998).
[09]S. GAN and J. K. GILLHAM, “A Methodology for Characterizing Reactive Coatings: Time-Temperature-Transformation (TTT) Analysis of then Competition between Cure, Evaporation, and Thermal Degradation for an Epoxy-Phenolic System,” Journal of Applied Polymer Science, Vol. 37, pp803-816, (1989).
[10]G. WISANRAKKIT, J. K. GILLHAM, and J. B. ENNS, “The Glass Transition Temperature (Tg) as a Parameter for Monitoring the Cure of an Amine/Epoxy System at Constant Heating Rates,” Journal of Applied Polymer Science, Vol. 41, pp1859-1912, (1990).
[11] Ferry, John D., “Viscoelastic properties of polymers,” New York, 1978.
[12] JOHN B. ENNS and JOHN K. GILLHAM, “Effect of the Extent of Cure on the Modulus, Glass Transition, Water Absorption, and Density of an Amine-Cured Epoxy, ” Journal of Applied Polymer Science, Vol. 28, pp2831-2846, (1983).
[13] H. HENNING WINTER and FRANCOIS CHAMBON, “Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point, ” Journal of Rheology, 30(2), pp367-382, (1986).
[14] N. NAKAJIMA and E. R. HARRELL, “Stress Relaxation as a Method of Analyzing Stress Growth, Stress Overshoot and Steady-State Flow of Elastomers ” Journal of Rheology, 30(2), pp383-408, (1986).
[15] K. P. PANG and J. K. GILLHAM, “Anomalous Behavior of Cured Epoxy Resins: Density at Room Temperature versus Time and Temperature of Cure, ” Journal of Applied Polymer Science, Vol. 37, pp1969-1991, (1989).
[16] S. R. WHITE and H. T. HAHN “Process Modeling of Composite Materials: Residual Stress Development during Cure. Part II. Experimental Validation, ”Journal of COMPOSITE MATERIALS, Vol. 26, pp2423-2453, (1992).
[17] K. P. PANG and J. K. GILLHAM “Competition between Cure and Thermal Degradation in a High Tg Epoxy System: Effect of Time and Temperature of Isothermal Cure on the Glass Transition Temperature, ”Journal of Applied Polymer Science, Vol. 39, pp909-933, (1990).
[18] K. P. PANG and J. K. GILLHAM “Annealing Studies on a Fully Cured Epoxy Resin: Effect of Thermal Prehistory, and Time and Temperature of Physical Annealing, ”Journal of Applied Polymer Science, Vol. 38, pp2115-2130, (1989).
[19] Price, D. M., “Modulated-Temperature Thermomechanical Measurements, ”Material Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, A.T. Riga and L. H. Judovits, Eds., American Society for Testing and Materials, West Conshohocken, PA, pp103-114, (2001).
[20] SINDEE L. SIMON, GREGORY B. MCKENNA, OLIVIER SINDT “Modeling the Evolution of the Dynamic Mechanical Properties of a Commercial Epoxy During Cure after Gelation,” Journal of Applied Polymer Science, Vol. 76, pp495-508, (2000).
[21] Douglas R. Miller and Christopher W. Macosko, “A New Derivation of Post Gel Properties of Network Polymers,” Macromolecules, Vol. 9, No. 2. pp206-211, (1976).
[22] J. P. MERCIER, J. J. AKLONIS, M. LITT, and A. V. TOBOLSKY, “ Viscoelastic Behavior of the Polycarbonate of Bisphenol A,” Journal of Applied Polymer Science , Vol. 9, pp447-459, (1965).
[23] VERNAL H. KENNER, BRIAN D. HARPER, and VLADIMIR Y. ITKIN, “Stress Relaxation in Molding Compounds,” Journal of Electronic Materials, Vol. 26, No. 7, pp821-826, (1997).
[24] L. J. Ernst, C. van’t Hot, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer, J. Janssen, “Mechanical Modeling and Characterization of the Curing Process of Underfill Materials, ” Journal of Electronic Packaging Vol. 124, pp97-105, (2002).
[25] H. E. BAIR, D. J, BOYLE, J. T. RYAN, C. R. TAYLOR, and S. C. TIGHE, and D. L. CROUTHAMEL, “ Thermomechanical Properties of IC Molding Compounds, ” POLYMER ENGINEERING AND SCIENCE, Vol. 30, pp609-617, (1990).
[26] H, E, BAIR, D. J. BOYLE, J. T. RYAN, C. R. TAYLOR, and S. C. TIGHE, and D. L. CROUTHAMEL, “ Thermomechanical Properties of IC Molding Compounds,” POLYMER ENGINEERING AND SCIENCE, Vol. 30, pp609-617, (1990).
[27] S. R. White, A. B. Hartman, “Effect of Cure State on Stress Relaxation in 3501-6 Epoxy Resin,” POLYMER ENGINEERING AND SCIENCE, MID-DECEMBER Vol. 36, No. 23, pp262-265, (1997).
[28] YEONG K. KIM and SCOTT R. WHITE, “Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure,” POLYMER ENGINEERING AND SCIENCE, MID-DECEMBER Vol. 36, No. 23, pp2852-2862, (1996).
[29] Tommy R. Guess and Steven N. Burchett, “AN EXPERIMENTAL/ANALYTICAL STUDY OF STRAINS IN ENCAPSULATED ASSEMBLIES,” Advances in Electronic Packaging, pp543-550, (1992).
[30] DANIEL J. O’BRIEN, PATRICK T. MATHER, SCOTT R. WHITE, “Viscoelastic Properties of an Epoxy Resin during Cure,” Journal of COMPOSITE MATERIALS, Vol. 35 No. 10, pp883-903, (2001).
[31] Hideo Miura, Makoto Kitano, Asao Nishimura, and Sueo Kawai, “THERMAL STRESS MEASUREMENT IN SILICON CHIPS ENCAPSULATED IN PLASTIC PACKAGES UNDER TEMPERATURE CYCLING,” Advances in Electronic Packaging, pp957-963, (1992).
[32] WILLEM F. VAN DEN BOGERT, DANIEL J. BELTON, MICHAEL J. MOLTER, DAVID S. SOANE, AND ROLF W. BIERNATH, “Thermal Stress in Semiconductor Encapsulating Materials,” IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING, Vol. 11, No. 3 pp245-251, (1988).
[33] KATSUHITO SUZUKI and YASUSHI MIYANO, “Change of Viscoelastic of Epoxy Resin in the Curing Process,” JOURNAL OF APPLIED POLYMER SCIENCE, Vol. 21, pp3367-3379, (1977).
[34] R. F. FEDORS, S, Y, CHUNG, and S. D. HONG, “Stress-Strain Behavior of Poly(ethylene-co-vinylacetate) at Varying Crosslink Density,” Journal of Applied Polymer Science, Vol. 30, pp2551-2563, (1985).
[35] Ferry, J. D., "Viscoelastic Properties of Polymers", Third Edition, John Wiley and Sons: New York, (1980).
[36] Vernal H. Kenner, Brian D. Harper and Vladimir Y. Itkin, "Stress Relaxation in Molding Compounds", Journal of Electronic Materials, Vol. 26, N0. 7, pp821~826, (1997).
[37] L. J. Ernst, C. van’t Hof, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A.W. J. den Boer and J. Janssen, " Mechanical Modeling and Characterization of the Curing Process of Underfill Materials”, Journal of Electronic Packaging: Transaction of ASME, Vol. 124, pp821~826, (1997).