簡易檢索 / 詳目顯示

研究生: 洪聖棋
Hung, Sheng-Chi
論文名稱: 奈米粒子結構大小對膽固醇液晶顯示器的光電特性改善
Structure and Size Effect of Nanoparticles on Cholesteric Liquid Crystal Devices
指導教授: 劉俊彥
Liu, Chun-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 95
中文關鍵詞: 聚多巴胺粒子纖維素粒子膽固醇液晶關鍵字高分子穩定 型膽固醇液晶遮光器
外文關鍵詞: polydopamine particle, cellulose particle, cholesteric liquid crystal, polymer stabilized cholesteric liquid crystal, light shutter
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液晶對於溫度、電場、磁場和應力等刺激很敏感,並表現出特有的驅 動行為。因此,液晶對於顯示器、光柵和感測裝置具有極大的開發潛力。 本研究中,為了製造液晶顯示器且提升膽固醇液晶顯示之光電性質,我們 合成了一系列不同大小的聚多巴胺粒子。為了進一步提升對液晶顯示器 的干擾效應,垂直配向劑(DMOAP)被用為對聚多巴胺粒子進行表面修飾, 以達到微粒表面具有輻射狀結構。為了研究微粒結構對液晶排列的影響, 我們更製備纖維素粒子和表面經輻射狀修飾後的纖維素粒子。製備後的 聚多巴胺粒子和纖維素粒子被用於製造液晶顯示器。摻雜了表面修飾後 的聚多巴胺粒子,成功的提升了膽固醇顯示器和高分子穩定型膽固醇液 晶顯示器的光電效能。由於纖維素棒狀顆粒,具有較大長度、及較小直徑, 未經輻射修飾的纖維素粒子,對液晶排列表現出更有效的干擾,從而達成 了 97.4%的最高對比度。所製備的 PD2T 液晶顯示器,具有 2.92 V 的低 閥值電壓和 13 ms 的快速響應時間。結果顯示,表面輻射修飾後的聚多 巴胺粒子和表面未經改質的纖維素粒子,均成功且有效地提高了液晶顯 示器的的光電特性。本研究成功的以微粒添加,取代了傳統表面配位層操 控液晶分子,達成液晶顯示器設計。此為一新穎性設計,將為液晶顯示元 件設計開啟一新穎性、低成本、且簡便的製作技術。

    Liquid crystals are sensitive to temperature, electric field, magnetic field, and stress showing some specific actuations. As a result, liquid crystals offer enormous potential in the creation of display, grating, and sensing devices. In this study, to fabricate liquid crystal displays (LCD) and to improve the electrooptical properties of the cholesteric liquid crystal (CLC) devices, a series of polydopamine (PDA) particles with various sizes was synthesized. To further improve the disturbing effect on LCs, PDAs were modified using dimethyloctadecyl-3-(trimeth- oxysilyl)propyl ammonium chloride (DMOAP) revealing radial constructions. To study structure effect on LC arrangement, both cellulose nanoparticles (CNP) and DMOAP modified CNP particles were synthesized. The synthesized PDA and CNP particles were used for the fabrication of LCDs. Electro-optical properties of the fabricated LCDs doping with nanoparticles were studied. The synthesized radial constructed PDA particles successfully enhanced the electro-optical properties of CLC and PSCLC cells. Due to the long length and small diameter of Cellulose rod-like particle, the naked Cellulose particle shows more efficient disturbance on LC arrangement leads to the achievement of the highest contrast of 97.4%. The fabricated PD2T LC cell showed a low threshold voltage of 2.92 V and a fast response time of 13.00 ms. Based on the results, the modified PDA particles and non-modified cellulose particles successfully enhance the electro-optical properties of LC devices. This is a new skill for the fabrication of high performance, low cost, and easy processed LCD devices.

    Abstract I 中文摘要 III 致謝 V Contents VI List of Schemes IX List of Figures X List of Tables XVII 1. Introduction 1 1-1 Preface 1 1-2 Research Motivation 2 2. Literature Review 4 2-1 Introduction of Liquid Crystals 4 2-2 Classification of Liquid Crystals 6 2-3 Thermotropic Liquid Crystals 6 2-3-1 Nematic Liquid Crystal (NLC) Phase 8 2-3-2 Smectic Liquid Crystal (SmLC) Phase 9 2-3-3 Cholesteric Liquid Crystal (CLC) Phase[7] 10 2-3-4 Disc-like (Discotic) Liquid Crystals 17 2-4 Lyotropic Liquid Crystals 18 2-5 Physical Properties of Liquid Crystals 20 2-5-1 Anisotropic Properties of Liquid Crystals 20 2-5-2 Birefringence of Liquid Crystals[24] 21 2-5-3 Dielectric Properties of Liquid Crystals 23 2-6 Polymer-Liquid Crystal Composites 24 2-6-1 Polymer Stabilized Cholesteric Liquid Crystals (PSCLCs) 26 2-7 Additives in Liquid Crystal System 28 2-8 Properties of Polydopamine (PDA)[35, 36] 29 2-9 Properties of Cellulose Nanoparticles[39] 31 3. Experimental Section 34 3-1 Materials 34 3-2 Instruments 35 3-3 Experimental Process 36 3-3-1 Synthesis and Modification of Polydopamine (PDA) Particles and Cellulose Nanoparticles 36 3-3-2 Preparation of Cholesteric Liquid Crystal Cells 39 3-3-3 Preparation of CLC and PSCLC Mixtures 40 3-3-4 Fabrication of CLC and PSCLC Cells 42 3-3-5 Measurement of Electro-Optical Properties 45 4. Results and Discussion 47 4-1 Characterization of Particles 47 4-1-1 SEM Image of Polydopamine Particles 47 4-1-2 Hydrophilicity of Polydopamine Particles 48 4-1-3 AFM Image of Cellulose Particles 50 4-1-4 Dynamic Light Scattering (DLS) Spectrometer Analysis of Particles 51 4-2 Characterization of Particles Doped CLC 52 4-2-1 POM Textures of CLC Cell 52 4-2-2 Thermal Properties Analysis 55 4-2-3 Electro-Optical Properties of Particle Doped CLC Cells 57 4-3 Characterization of Particle Doped PSCLC 68 4-3-1 Thermal Properties of PSCLC Mixtures 69 4-3-2 Electro-Optical Properties of Particle Doped PSCLC Cells 70 4-4 Characterization of Different Particle Sizes Doped LC Cell 82 4-5 Stability of LC cells 88 5. Conclusions 89 6. References 90

    1. Cupelli, D., F.P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, Self-adjusting smart windows based on polymer-dispersed liquid crystals. Solar Energy Materials and Solar Cells, 93(11): p. 2008-2012, 2009.
    2. Meng, C., E. Chen, L. Wang, S. Tang, M. Tseng, J. Guo, Y. Ye, Q.F. Yan, and H. Kwok, Color-switchable liquid crystal smart window with multi-layered light guiding structures. Optics express, 27(9): p. 13098-13107, 2019.
    3. Dong, R.Y., Introduction to Liquid Crystals. Nuclear Magnetic Resonance of Liquid Crystals: p. 1-24, 1997.
    4. Jeon, B.-G., T.-H. Choi, S.-M. Do, J.-H. Woo, and T.-H. Yoon, Effects of curing temperature on switching between transparent and translucent states in a polymer-stabilized liquid-crystal cell. IEEE Transactions on Electron Devices, 65(10): p. 4387-4393, 2018.
    5. Donald, A.M., A.H. Windle, and S. Hanna, Liquid crystalline polymers. 2006.
    6. Sun, H., Z. Xie, C. Ju, X. Hu, D. Yuan, W. Zhao, L. Shui, and G. Zhou, Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers, 11(4): p. 694, 2019.
    7. Hawkins, R.J. and E.W. April, Liquid crystals in living tissues. Advances in Liquid Crystals: Volume 6, 6: p. 243, 2013.
    8. De Gennes, P.-G. and J. Prost, The physics of liquid crystals. (83), 1993.
    9. Chilaya, G., G. Hauck, H.D. Koswig, and D. Sikharulidze, Electric‐field controlled color effect in cholesteric liquid crystals and polymer‐dispersed cholesteric liquid crystals. Journal of applied physics, 80(3): p. 1907-1909, 1996.
    10. Chanishvili, A., G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, Lasing in dye‐doped cholesteric liquid crystals: two new tuning strategies. Advanced Materials, 16(9‐10): p. 791-795, 2004.
    11. Mallia, V.A. and N. Tamaoki, Photochemically driven smectic− cholesteric phase transition in an inherently photoactive dimesogen. Chemistry of materials, 15(17): p. 3237-3239, 2003.
    12. Kang, S.-W., S. Sprunt, and L.-C. Chien, Polymer-stabilized cholesteric diffraction gratings: Effects of uv wavelength on polymer morphology and electrooptic properties. Chemistry of materials, 18(18): p. 4436-4441, 2006.
    13. Butoi, B. and D. Staicu, Cured pmma thin films for greatly improving the electro-optical response time in nematic liquid crystal pixels. Dig. J. Nanomater. Biostruct, 14: p. 175-182, 2019.
    14. D’Elia, S., V. Barna, N. Scaramuzza, G. Strangi, and R. Bartolino, The influence of drying temperature on the close packed structure of silanized monolayers deposited on indium tin oxide (ITO) substrates. Journal of Materials Research, 24(9): p. 2784-2794, 2009.
    15. Kim, K.-H., H.-J. Jin, K.-H. Park, J.-H. Lee, J.C. Kim, and T.-H. Yoon, Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection. Optics Express, 18(16): p. 16745-16750, 2010.
    16. Khandelwal, H., A.P. Schenning, and M.G. Debije, Infrared regulating smart window based on organic materials. Advanced Energy Materials, 7(14): p. 1602209, 2017.
    17. Lee, C.S., T.A. Kumar, J.H. Kim, J.H. Lee, J.S. Gwag, G.-D. Lee, and S.H. Lee, An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter. Journal of Materials Chemistry C, 6(15): p. 4243-4249, 2018.
    18. Kumar, S., Self-organization of disc-like molecules: chemical aspects. Chemical Society Reviews, 35(1): p. 83-109, 2006.
    19. Cameron, N.S., M.K. Corbierre, and A. Eisenberg, 1998 EWR Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Canadian journal of chemistry, 77(8): p. 1311-1326, 1999.
    20. Barberá, J., A.C. Garcés, N. Jayaraman, A. Omenat, J.L. Serrano, and J.F. Stoddart, Sugar‐coated discotic liquid crystals. Advanced Materials, 13(3): p. 175-180, 2001.
    21. Yoshizawa, A., Liquid crystal supermolecules stabilizing an optically isotropic phase with frustrated molecular organization. Polymer journal, 44(6): p. 490-502, 2012.
    22. Kumar, S., Experimental Study of Physical Properties and Phase Transitions. 2001.
    23. Collings, P.J. and M. Hird, Introduction to liquid crystals chemistry and physics. 2017.
    24. Bahadur, B., Liquid crystals: applications and uses. 1, 1990.
    25. Jain, A.K. and R.R. Deshmukh, An overview of polymer-dispersed liquid crystals composite films and their applications. Liq. Cryst. Disp. Technol: p. 1-68, 2020.
    26. Binet, C., M. Mitov, and M. Mauzac, Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. Journal of Applied Physics, 90(4): p. 1730-1734, 2001.
    27. Lee, K.M., V.P. Tondiglia, and T.J. White, Bistable switching of polymer stabilized cholesteric liquid crystals between transparent and scattering modes. MRS Communications, 5(2): p. 223-227, 2015.
    28. Ahmad, F., M. Jamil, and Y.J. Jeon, Reverse mode polymer stabilized cholesteric texture (PSCT) light shutter display–A short review. Journal of Molecular Liquids, 233: p. 187-196, 2017.
    29. Yang, D.K., L.C. Chien, and J. Doane, Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters. Applied physics letters, 60(25): p. 3102-3104, 1992.
    30. Hu, X., W. Zeng, W. Yang, L. Xiao, L.T. De Haan, W. Zhao, N. Li, L. Shui, and G. Zhou, Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liquid Crystals, 46(2): p. 185-192, 2019.
    31. Duran, H., B. Gazdecki, A. Yamashita, and T. Kyu, Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liquid crystals, 32(7): p. 815-821, 2005.
    32. Yan, X., Y. Zhou, W. Liu, S. Liu, X. Hu, W. Zhao, G. Zhou, and D. Yuan, Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices. Liquid Crystals, 47(8): p. 1131-1138, 2020.
    33. Kocakülah, G., G. Algül, and O. Köysal, Effect of CdSeS/ZnS quantum dot concentration on the electro-optical and dielectric properties of polymer stabilized liquid crystal. Journal of Molecular Liquids, 299: p. 112182, 2020.
    34. Mrukiewicz, M., K. Kowiorski, P. Perkowski, R. Mazur, and M. Djas, Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein journal of nanotechnology, 10(1): p. 71-78, 2019.
    35. Hong, S., Y.S. Na, S. Choi, I.T. Song, W.Y. Kim, and H. Lee, Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. Advanced Functional Materials, 22(22): p. 4711-4717, 2012.
    36. Liu, Y., K. Ai, and L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical reviews, 114(9): p. 5057-5115, 2014.
    37. Nieto, C., G. Marcelo, M. Vega, and E.M.M. Del Valle, Antineoplastic behavior of polydopamine nanoparticles prepared in different water/alcohol media. Colloids and Surfaces B: Biointerfaces, 199: p. 111506, 2021.
    38. Sheng, W., B. Li, X. Wang, B. Dai, B. Yu, X. Jia, and F. Zhou, Brushing up from “anywhere” under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical science, 6(3): p. 2068-2073, 2015.
    39. Moon, R.J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7): p. 3941-3994, 2011.
    40. Hubbe, M.A., O.J. Rojas, L.A. Lucia, and M. Sain, Cellulosic nanocomposites: a review. BioResources, 3(3): p. 929-980, 2008.
    41. Habibi, Y., L.A. Lucia, and O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 110(6): p. 3479-3500, 2010.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE