| 研究生: |
李典益 Li, Dian-Yi |
|---|---|
| 論文名稱: |
離子液體分子為模板應用於中孔洞單水鋁礦與γ-氧化鋁之合成 Synthesis of Mesoporous Boehmite and γ-alumina Templated with Ionic Liquid Molecules |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 中孔洞氧化鋁 、離子液體 、中孔洞單水鋁礦 |
| 外文關鍵詞: | ionic liquid, mesoporous boehmite, mesoporous alumina |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用不同界面活性劑當作有機模板來合成中孔洞的氧化鋁已被廣泛的研究。近來有許多文獻報導藉由離子液體取代界面活性劑當模板合成具有特殊外觀形貌與獨特表面結構的奈米材料,例如 TiO2ヽSiO2等。本研究以離子液體作為結構引導劑,與鋁前趨物(aluminum tri-sec-butoxide, ASB)一起溶於溶劑中(乙醇或甲苯)反應,透過水量的調控,合成具有中孔洞的單水鋁礦(準水鋁礦)或γ-氧化鋁。
實驗中水量的多寡會影響了後來產物的晶形ヽ形貌與孔洞性質等。本實驗依溶劑和離子液體的搭配而分成AヽB和C三個系列研究。A系列實驗是將定量的ASB與C16MMIMCl溶於乙醇中反應,調控水量,使莫耳比例ASB/C16MMIMCl/H2O分別為11.2/1.0/1.25 (Sample III)ヽ11.2/1.0/10.0 (Sample IV)ヽ11.2/1.0/ 40.9 (Sample V)ヽ11.2/2.0/1.25(Sample VI)ヽ11.2/2.0/10.0(Sample VII)ヽ11.2/2.0/40.9 (Sample VIII)。未鍛燒的Sample III 與VI 是屬於非晶形,經550℃鍛燒後其形貌均為薄片狀且上有許多骨架中孔洞的結構,800℃鍛燒的晶形則轉變為γ-氧化鋁,但形貌沒有很大的改變。Sample IVヽVヽVII與VIII其未鍛燒的晶形均為準水鋁礦,外觀形貌主要呈現奈米纖維的結構,鍛燒溫度由550℃提升至800℃均形成γ-氧化鋁的晶形,原本奈米纖維的結構出現粒子聚集的現象,鍛燒之後所得到的孔洞類型屬於組織孔洞。
將定量的ASB分別加入C16MMIMCl(B系列)或 C16MMIMPF6(C系列)後一同溶於甲苯中反應,再分別調控添加的H2O量。B系列實驗中,ASB/C16MMIMCl/H2O莫耳比為11.2/1.0/1.25 (Al-Cl-002)的產物屬於非晶形,經800℃鍛燒則為γ-氧化鋁,外觀呈現出為薄板狀上有骨架孔洞。莫耳比為11.2/1.0/10.0(Al-Cl-012)的產物也為非結晶形,經500℃鍛燒之後形成γ-氧化鋁,由TEM觀察到的是長型粒子所形成的結構。莫耳比為11.2/1.0/40.9(Al-Cl-052)的產物經 500℃鍛燒之後,晶形從單水鋁礦轉變為γ-氧化鋁。C系列實驗中,ASB/C16MMIMPF6/H2O莫耳比為14.7/1.0/1.56 (Al-PF6-002)的產物為非晶形。經500℃鍛燒之後,可觀察到是由許多粒狀粒子堆積而成的聚集體。莫耳比為14.7/1.0/12.4 (Al-PF6-012)與14.7/1.0/53.9 (Al-PF6-052)的產物均呈現單水鋁礦的晶形,500℃鍛燒之後均形成γ-氧化鋁,除了可看到互相交錯的奈米纖維外,某些區域還可看到長度較短的奈米棒結構。
Synthesis of mesoporous alumina using various surfactants as a template has been extensively investigated. Currently, with ionic liquid molecules as a structure-directing on agent, unique morphologies or surface structures metal oxides, such as TiO2, SiO2, have been reported. In the present paper, we describe the reactions of aluminum precursor (aluminum tri-sec-butoxide, ASB) in the solvent of ethanol and toluene with controlled amounts of water using ionic liquid molecules (C16MMIMCl or C16MMIMPF6) as a structure director to the synthesis mesoporous of boehmite(or pseudoboehmite) and alumina.
The amount of water shows contrasted effects on crystal phase, morphology, and porosity for the resulting particles. Base on the solvent and ionic liquid used, the experimental conditions are divided into three series of A, B, and, C. In series A, fixed amount ASB and C16MMIMCl were used in ethanol, but the amount of H2O was controlled with respect to ASB. The molar ratios of ASB/C16MMIMCl/H2O were 11.2/1.0/1.25 (Sample III), 11.2/1.0/10.0(Sample IV), 11.2/1.0/40.9(Sample V), 11.2/2.0/1.25(Sample VI), 11.2/2.0/10.0(Sample VII) 11.2/2.0/40.9 (Sample VIII). In the cases of Sample III and VI, the as-prepared particles were amorphous and plate-shaped. They showed framework porosity, with a narrow pore-size distribution after 550 ℃ calcination. These particles were transformed into γ-Al2O3 at 800℃, but the shape was retained. In the cases of Sample IV, V, VII, and VIII, the as-prepared particles were fibrous pseudoboehmite phase, which was almost destroyed after 550 ℃ and transformed into γ-Al2O3 at 800℃, together with a change of particle morphology. The calcined samples had a textural porosity.
In series B and C, C16MMIMCl and C16MMIMPF6 were used respectively, with toluene as solvent. In series B, as-prepared product from the reaction of molar ratio of ASB/C16MMIMCl/H2O =11.2/1.0/1.25 (Al-Cl-002) was amorphous phase, which was almost transformed into γ-Al2O3 after 800℃ calcination. The morphology of the calcined products was plate-shaped with a framework porosity at plate-shaped. The product from the reaction of molar ratio as 11.2/1.0/10.0 (Al-Cl-012) after 500℃ calcination had a γ-Al2O3 phase and the TEM image showed aggregate elongated particles. For the product from the reaction of molar ratio as 11.2/1.0/40.9 (Al-Cl-052), crystalline γ-alumina was formed through boehmite phase after transition 500℃calcination. In series C, as-prepared product from the reaction of molar ratio of ASB/C16MMIMPF6/H2O =14.7/1.0/1.56 (Al-PF6-002) was amorphous phase. After 500℃ calcination, the TEM image showed a large number of grainy particles. The product from the reaction of molar ratio as 14.7/1.0/12.4 (Al-PF6-012) and 14.7/1.0/53.9 (Al-PF6-052) were boehmite phase, which were transformed into γ-Al2O3 after 500℃ calcination. The morphology of the calcined products showed not only interconnecting fibrous particles but also nanorods in some areas.
參考文獻
1. O. V. Al’myasheva, E. N. Korytkova, A. V. Maslov, V. V. Gusarov, Inorg. Mater., 41, 460, 2005
2. 沙特菲德(Satterfield);王奕凱, 邱宏明, 李秉傑, 非均勻系催化原理與應用, 渤海堂, 臺北巿: 民77
3. S. C. Kuiry, E. Megen, S. D. Patil, S. A. Deshpande, S. Seal, J. Phys. Chem. B, 109, 3868, 2005
4. D. Grebille, J. F. BERAR, J. Appl. Cryst., 19, 249, 1986
5. M. R. Harris, K. S. W. Sing, J. Appl. Chem., 8, 586, 1958
6. J. N. Armor, J. E. Carlson, J. Mater. Sci., 22, 2549, 1987
7. D. J. Suh, T. J. Park, J. H. Kim, K. L. Kim, Chem. Mater., 9, 1903, 1997
8. Z. Zhang, R. W. Hicks, T. R. Pauly, T. J. Pinnavaia, J. Am. Chem. Soc., 124, 1592, 2002
9. Z. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc., 124, 12294, 2002
10. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 359, 710, 1992
11. P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1800, 1914
12. F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 98, 203, 1951
13. H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, J. Am Chem. Soc., 97, 3264, 1975
14. J. S. Wikes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 21, 1263, 1982
15. J. S. Wilkes, M. J. Zaworotko, J. Chem Soc. Chem. Commun., 965, 1992
16. K. R. Seddon, A. Stark, M. -J. Torres, Pure Appl. Chem., 72, 2275, 2000
17. J. G. Huddleston, A. E. Visser, W. M. Reicert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chemistry, 3, 156, 2001
18. J. D. Holbrey, K. R. Seddon, J. Chem. Soc. Dalton Trans., 2133, 1999
19. H. L. Ngo, K. Lecompte, L. Hargens, A. B. Mcewen, Thermochimica Acta., 357, 97, 2000
20. A. Elaiwi, P. B. Hitchcock, K. R. Seddon, N. Srinivasan, Y. -M. Tan, T. Welton, J. A. Zora, J. Chem. Soc. Dalton Trans., 3467, 1995
21. P. Wasserscheid, T. Welton, Ionic liquids in Synthesis, Wiley-VCH, Weinheim, c 2003.
22. A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J. Phys. Chem., 88, 2614, 1984
23. P. Bonhôte, A.P. Dias, N. Papageogiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 35, 1168, 1996
24. J. S. Wilkes, J. Mol. Cata. A-Chem., 214, 11, 2004
25. A. B. McEwen, H. L. Ngo, K. Le Compte, J. L. Goldman, J. Electrochem. Soc., 146, 1687, 1999
26. P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. de Souza, J. Dupont, J. Chim. Phys., 95, 1626, 1998
27. Y. Chauvin, H. Olivier-Bourbigou, Chemtech, 25, 26, 1995
28. R. P. Swatloski, S. K. Spear, J. D. Holbrey, J. Am. Chem. Soc., 124, 4974, 2002
29. C. Ye, W. Liu, Y. Chen, L. Yu, Chem. Commun., 2244, 2001
30. J. Pernak, K. Sobaszkiewicz, I. Mirska, Green Chemistry, 5, 52, 2003
31. B. G. Trewyn, C. M.Whitman, V. S. -Y. Lin, Nano Lett., 4, 2139, 2004
32. T. Nakashima, N. Kimizuka, J. Am .Chem. Soc., 125, 6386, 2003
33. Y. -J. Zhu, W. -W. Wang, R. -J. Qi, X. -L. Hu, Angew. Chem. Int. Ed., 43, 1410, 2004
34. Y. Zhou, M. Antonietti, Chem. Mater., 16, 544, 2004
35. T. F. Baumann, A.E. Gash, S.C. Chinn, A. M. Sawvel, R. S. Maxwell, J. H. Satcher, Jr., Chem. Mater., 17, 395, 2005
36. R. W. Hicks, T. J. Pinnavaia, Chem. Mater., 15, 78, 2003
37. H. Hou, Y. Xie, Q. Yang, Q. Guo, C. Tan, Nanotechnology, 16, 741, 2005
38. J. Zhang, S. Wei, J. Lin, J. Luo, S. Liu, H. Song, E. Elawad, X. Ding, J. Gao, S. Qi, C. T.ang, J. Phys. Chem. B, 110, 21680, 2006
39. S. Cabrera, J. E. Haskouri, J. Alamo, A. Beltrán, D. Beltrán, S. Mendioroz, M. D. Maecos, P. Amorós, Adv. Mater., 11, 379, 1999
40. J. A. Toledo, X. Bokhimi, C. Lopez, C. Angeles, F. Hernandez, J. J. Fripiat, J. Mater. Res., 20, 2947, 2005
41. P. T. Tanev, T. J. Pinnavaia, Chem. Mater., 8, 2068, 1996
42. K. S. Yoo, T. G. Lee, J. Kim, Micropor. Mesopor. Mater., 84, 211, 2005
43. K. J. D. MacKenzie, M. E. Suith, Multinuclear Solid-State NMR of Inorganic Materials, Pergamon Press: New York, 2002
44. S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl., 35, 1102, 1996
45. J. Aguado, J. M. Escola, M. C. Castro, B. Paredes, Micropor. Mesopor. Mater., 83, 181, 2005
46. K. Okada, T. Nagashima, Y. Kameshima, A. Yasumori, T. Tsukada, J. Colloid and Interface Sci., 253, 308, 2002
47. H. -W. Lee, B. -K. Park, M. -Y. Tian, J. -M. Lee, J. Ind. Eng. Chem., 12, 295, 2006