簡易檢索 / 詳目顯示

研究生: 李典益
Li, Dian-Yi
論文名稱: 離子液體分子為模板應用於中孔洞單水鋁礦與γ-氧化鋁之合成
Synthesis of Mesoporous Boehmite and γ-alumina Templated with Ionic Liquid Molecules
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 中孔洞氧化鋁離子液體中孔洞單水鋁礦
外文關鍵詞: ionic liquid, mesoporous boehmite, mesoporous alumina
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用不同界面活性劑當作有機模板來合成中孔洞的氧化鋁已被廣泛的研究。近來有許多文獻報導藉由離子液體取代界面活性劑當模板合成具有特殊外觀形貌與獨特表面結構的奈米材料,例如 TiO2ヽSiO2等。本研究以離子液體作為結構引導劑,與鋁前趨物(aluminum tri-sec-butoxide, ASB)一起溶於溶劑中(乙醇或甲苯)反應,透過水量的調控,合成具有中孔洞的單水鋁礦(準水鋁礦)或γ-氧化鋁。
    實驗中水量的多寡會影響了後來產物的晶形ヽ形貌與孔洞性質等。本實驗依溶劑和離子液體的搭配而分成AヽB和C三個系列研究。A系列實驗是將定量的ASB與C16MMIMCl溶於乙醇中反應,調控水量,使莫耳比例ASB/C16MMIMCl/H2O分別為11.2/1.0/1.25 (Sample III)ヽ11.2/1.0/10.0 (Sample IV)ヽ11.2/1.0/ 40.9 (Sample V)ヽ11.2/2.0/1.25(Sample VI)ヽ11.2/2.0/10.0(Sample VII)ヽ11.2/2.0/40.9 (Sample VIII)。未鍛燒的Sample III 與VI 是屬於非晶形,經550℃鍛燒後其形貌均為薄片狀且上有許多骨架中孔洞的結構,800℃鍛燒的晶形則轉變為γ-氧化鋁,但形貌沒有很大的改變。Sample IVヽVヽVII與VIII其未鍛燒的晶形均為準水鋁礦,外觀形貌主要呈現奈米纖維的結構,鍛燒溫度由550℃提升至800℃均形成γ-氧化鋁的晶形,原本奈米纖維的結構出現粒子聚集的現象,鍛燒之後所得到的孔洞類型屬於組織孔洞。
    將定量的ASB分別加入C16MMIMCl(B系列)或 C16MMIMPF6(C系列)後一同溶於甲苯中反應,再分別調控添加的H2O量。B系列實驗中,ASB/C16MMIMCl/H2O莫耳比為11.2/1.0/1.25 (Al-Cl-002)的產物屬於非晶形,經800℃鍛燒則為γ-氧化鋁,外觀呈現出為薄板狀上有骨架孔洞。莫耳比為11.2/1.0/10.0(Al-Cl-012)的產物也為非結晶形,經500℃鍛燒之後形成γ-氧化鋁,由TEM觀察到的是長型粒子所形成的結構。莫耳比為11.2/1.0/40.9(Al-Cl-052)的產物經 500℃鍛燒之後,晶形從單水鋁礦轉變為γ-氧化鋁。C系列實驗中,ASB/C16MMIMPF6/H2O莫耳比為14.7/1.0/1.56 (Al-PF6-002)的產物為非晶形。經500℃鍛燒之後,可觀察到是由許多粒狀粒子堆積而成的聚集體。莫耳比為14.7/1.0/12.4 (Al-PF6-012)與14.7/1.0/53.9 (Al-PF6-052)的產物均呈現單水鋁礦的晶形,500℃鍛燒之後均形成γ-氧化鋁,除了可看到互相交錯的奈米纖維外,某些區域還可看到長度較短的奈米棒結構。

    Synthesis of mesoporous alumina using various surfactants as a template has been extensively investigated. Currently, with ionic liquid molecules as a structure-directing on agent, unique morphologies or surface structures metal oxides, such as TiO2, SiO2, have been reported. In the present paper, we describe the reactions of aluminum precursor (aluminum tri-sec-butoxide, ASB) in the solvent of ethanol and toluene with controlled amounts of water using ionic liquid molecules (C16MMIMCl or C16MMIMPF6) as a structure director to the synthesis mesoporous of boehmite(or pseudoboehmite) and alumina.
    The amount of water shows contrasted effects on crystal phase, morphology, and porosity for the resulting particles. Base on the solvent and ionic liquid used, the experimental conditions are divided into three series of A, B, and, C. In series A, fixed amount ASB and C16MMIMCl were used in ethanol, but the amount of H2O was controlled with respect to ASB. The molar ratios of ASB/C16MMIMCl/H2O were 11.2/1.0/1.25 (Sample III), 11.2/1.0/10.0(Sample IV), 11.2/1.0/40.9(Sample V), 11.2/2.0/1.25(Sample VI), 11.2/2.0/10.0(Sample VII) 11.2/2.0/40.9 (Sample VIII). In the cases of Sample III and VI, the as-prepared particles were amorphous and plate-shaped. They showed framework porosity, with a narrow pore-size distribution after 550 ℃ calcination. These particles were transformed into γ-Al2O3 at 800℃, but the shape was retained. In the cases of Sample IV, V, VII, and VIII, the as-prepared particles were fibrous pseudoboehmite phase, which was almost destroyed after 550 ℃ and transformed into γ-Al2O3 at 800℃, together with a change of particle morphology. The calcined samples had a textural porosity.
    In series B and C, C16MMIMCl and C16MMIMPF6 were used respectively, with toluene as solvent. In series B, as-prepared product from the reaction of molar ratio of ASB/C16MMIMCl/H2O =11.2/1.0/1.25 (Al-Cl-002) was amorphous phase, which was almost transformed into γ-Al2O3 after 800℃ calcination. The morphology of the calcined products was plate-shaped with a framework porosity at plate-shaped. The product from the reaction of molar ratio as 11.2/1.0/10.0 (Al-Cl-012) after 500℃ calcination had a γ-Al2O3 phase and the TEM image showed aggregate elongated particles. For the product from the reaction of molar ratio as 11.2/1.0/40.9 (Al-Cl-052), crystalline γ-alumina was formed through boehmite phase after transition 500℃calcination. In series C, as-prepared product from the reaction of molar ratio of ASB/C16MMIMPF6/H2O =14.7/1.0/1.56 (Al-PF6-002) was amorphous phase. After 500℃ calcination, the TEM image showed a large number of grainy particles. The product from the reaction of molar ratio as 14.7/1.0/12.4 (Al-PF6-012) and 14.7/1.0/53.9 (Al-PF6-052) were boehmite phase, which were transformed into γ-Al2O3 after 500℃ calcination. The morphology of the calcined products showed not only interconnecting fibrous particles but also nanorods in some areas.

    目 錄 摘要.....................................................i 英文摘要...............................................iii 誌謝....................................................vi 目錄...................................................vii 表目錄...................................................x 圖目錄..................................................xi 第一章 序 論 1 1.1 鋁氧化物和氫氧化物性質ヽ結構與合成的介紹 1 1.1.1 單水鋁礦(Boehmite, γ-AlOOH)之結構 4 1.2鋁氧化物的合成 5 1.3界面活性劑合成無機材料之簡介: 7 1.4離子液體(ionic liquid)的介紹 8 1.4.1 離子液體的起源 8 1.5 離子液體的性質 12 1.5.1 水溶性 12 1.5.2 熔點 13 1.5.3 黏度與密度 16 1.5.4 其他性質 18 1.6 離子液體的應用 19 1.6.1 溶解纖維素 19 1.6.2 作為潤滑劑 20 1.6.3 應用於核廢料處理 20 1.6.4 抗菌活性 20 1.6.5 當作模板(template) 21 1.7研究動機 22 第二章 實驗部份 24 2.1 實驗藥品 24 2.2 實驗方法 25 2.2.1 [C16MMIM]+PF6-置備 25 2.2.2 鋁氧化物的合成 25 2.3 產物鑑定 33 2.4.1 X-光粉末繞射分析 (Powder X-ray Diffraction (XRD))... 33 2.4.2 傅立葉轉換紅外光譜分析 (Fourier Transform Infrared Spectroscopy (FTIR)) 33 2.4.3 熱重分析分析 (Thermogravimetry Analysis (TGA)) 34 2.4.4 穿透式電子顯微分析 (Transmission Electron Microscopy(TEM)) 34 2.4.5 氮氣吸附/脫附測量 (N2 Adsorption/Desorption Isotherms) 35 2.4.6 固態核磁共振光譜分析 (Solid State Nuclear Magnetic Resonance (SSNMR)) 37 2.4.7 核磁共振光譜分析 (Nuclear Magnetic Resonance (NMR)) 37 2.4.8 熔點測定 38 第三章 實驗結果 39 3.1 [C16MMIM]+PF6- 的鑑定 39 3.2 A系列鋁氧化物的鑑定 39 3.3 B系列與C系列鋁氧化物的鑑定 67 第四章 實驗結果之討論 86 4.1離子液體的作用與影響 86 4.2水量的影響 87 4.3溶劑的影響 89 4.4鋁氧ヽ氫氧化物晶相變化過程之探討 90 4.5 形成奈米纖維之結構探討 90 第五章 結論 95 參考文獻 97 表 目 錄 表1.1 Huddleston探討不同陰離子所組成的離子液體對水的溶解度 12 表1.2 咪唑系列的離子液體之熔點Tmp與凝固點(Tfp) 14 表1.3 不同離子液體的熔點 15 表1.4 不同離子液體的密度(25℃) 17 表2.1 本實驗所使用的藥品及其純度ヽ來源 24 表2.2 合成A系列產物各藥品成分(component)的含量與莫耳比例.. 31 表2.3 合成B系列產物各藥品成分(component)的含量與莫耳比例 32 表2.4 合成C系列產物各藥品成分(component)的含量與莫耳比例 32 表3.1 Sample V與Sample VIII各個溫度範圍之重量損失百分比 ..43 表3.2 Sample III - Sample VIII 550℃及800℃鍛燒後之表面積ヽ孔 體積與平均孔徑值 47 表3.3 27Al NMR化學位移(chemical shift)與Al(III)離子之配位關係 50 表3.4 B與C系列500℃與800℃鍛燒之表面積ヽ孔體積與平均孔徑值 75 圖 目 錄 圖1.1 鋁氧化物與氫氧化物於不同溫度下之晶相轉換 2 圖1.2 單水鋁礦(boehmite, γ-AlOOH)的結構示意圖 5 圖1.3 1,3-diakylimidazolium chloride 9 圖 1.4 離子液體之陽離子與陰離子 11 圖1.5 離子液體隨溫度變化之黏度值(η) 16 圖1.6 [EMIM]Br結構,Br 形成氫鍵示意圖 18 圖1.7 Zhou合成出的平行排列矽薄板之TEM圖 22 圖2.1 [C16MMIM]+Cl 之結構式 25 圖2.2 [C16MMIM]+PF6-的合成步驟 27 圖2.3 A系列產物之合成步驟 28 圖2.4 B系列產物之合成步驟 29 圖2.5 C系列產物之合成步驟 30 圖3.1 Sample III(ASB/ [C16MMIM]+Cl-/ H2O=11.2 /1.0 /1.25)產物及其各溫度下鍛燒後樣品的XRD圖 52 圖3.2 Sample V(ASB/ [C16MMIM]+Cl-/ H2O=11.2 /1.0 /40.9)產物及其各溫度下鍛燒後樣品的XRD圖 53 圖3.3 Sample III~Sample VIII 產物(a), 300℃(b), 550℃(c), 800℃(d) 鍛燒後的XRD圖………………………………………….... 54 圖3.4 Sample III (a) 和V (b) 未鍛燒與鍛燒後之FTIR圖 55 圖3.5 Sample V與Sample VIII之熱重分析 56 圖3.6 Sample III未鍛燒(a)ヽ300℃鍛燒(b) 與Sample VI未鍛燒(c) ヽ300℃鍛燒(d) 之TEM圖 57 圖3.7 Sample III 經550℃鍛燒(a)ヽ800℃鍛燒(b) 與Sample VI 經550℃鍛燒(c)ヽ800℃鍛燒(d) 之TEM圖 58 圖3.8 Sample III與Sample VI 經550℃鍛燒(上圖)和800℃鍛燒(下圖) 之等溫氮氣吸附脫附曲線與孔徑大小分佈(內插圖) 59 圖3.9 Sample IV未鍛燒(a)ヽ300℃鍛燒(b) 與Sample VII未鍛燒(c)ヽ300℃鍛燒(d) 之TEM圖 60 圖3.10 Sample IV 經550℃鍛燒(a)ヽ800℃鍛燒(b) 與Sample VII 經550℃鍛燒(c)ヽ800℃鍛燒(d) 之TEM圖 61 圖3.11 Sample IV與Sample VII 經550℃鍛燒(上圖)和800℃鍛燒(下圖) 之等溫氮氣吸附脫附曲線與孔徑大小分佈(內插圖) 62 圖3.12 Sample V未鍛燒(a)ヽ300℃鍛燒(b) 與Sample VIII未鍛燒(c)ヽ300℃鍛燒(d) 之TEM圖 63 圖3.13 Sample V 經550℃鍛燒(a)ヽ800℃鍛燒(b) 與Sample VIII 經550℃鍛燒(c)ヽ800℃鍛燒(d) 之TEM圖 64 圖3.14 Sample V與Sample VIII 經550℃鍛燒(上圖)和800℃鍛燒(下圖) 之等溫氮氣吸附脫附曲線與孔徑大小分佈(內插圖) 65 圖3.15 Sample III(ASB/ [C16MMIM]+Cl-/ H2O=11.2 /1.0 /1.25) 經300℃ヽ550℃與800℃鍛燒之27Al NMR圖 66 圖3.16 Al-Cl-002(a)與Al-PF6-002(b) 未鍛燒ヽ經500℃與800℃鍛燒樣品之XRD圖 76 圖3.17 Al-Cl-012(a)與Al-PF6-012(b) 未鍛燒ヽ經500℃與800℃鍛燒樣品之XRD圖 77 圖3.18 Al-Cl-052(a)與Al-PF6-052(b) 未鍛燒ヽ經500℃與800℃鍛燒樣品之XRD圖 78 圖3.19 Al-Cl-012(a) 與Al-PF6-012(b) 未鍛燒ヽ經500℃與800℃鍛燒樣品的FTIR圖 79 圖3.20 Al-Cl-002未鍛燒(a), 500℃鍛燒(b), 800℃鍛燒(c), 與Al-PF6-002未鍛燒(d), 500℃鍛燒(e), 800℃鍛燒(f) 之TEM圖 80 圖3.21 Al-Cl-002與Al-PF6-002 經500℃鍛燒(上圖)和800℃鍛燒(下圖) 之等溫氮氣吸附脫附曲線與孔徑大小分佈(內插圖) 81 圖3.22 Al-Cl-012未鍛燒(a), 500℃鍛燒(b), 800℃鍛燒(c), 與Al-PF6-012未鍛燒(d), 500℃鍛燒(e), 800℃鍛燒(f) 之TEM圖 82 圖3.23 Al-Cl-012與Al-PF6-012 經500℃鍛燒(上圖)和800℃鍛燒(下圖) 之等溫氮氣吸附脫附曲線與孔徑大小分佈(內插圖) 83 圖3.24 Al-Cl-052未鍛燒(a), 500℃鍛燒(b), 800℃鍛燒(c), 與Al-PF6-052未鍛燒(d), 500℃鍛燒(e), 800℃鍛燒(f) 之TEM圖 84 圖3.25 Al-Cl-052與Al-PF6-052 經500℃鍛燒(上圖)和800℃鍛燒(下圖) 之等溫氮氣吸附脫附曲線與孔徑大小分佈(內插圖) 85 圖4.1 Sample I (ASB / [C16MMIM]+Cl- / H2O=11.2 / 0 / 1.25)未鍛燒之TEM圖 92 圖4.2 Sample II (ASB / [C16MMIM]+Cl- / H2O=11.2 / 0 / 40.9)未鍛燒之TEM圖 93 圖4.3 Al-Cl-002E(a) 與Al-Cl-052E(b) 未鍛燒ヽ500℃與800℃鍛燒之XRD圖 94 附圖一 [C16MMIM]+Cl- 與 [C16MMIM]+PF6- 之FTIR圖………...101 附圖二 Sample IV((a)ヽ(b)) 與Sample VII((c)ヽ(d)) 經550℃鍛燒之TEM圖……………………………………………………...102 附圖三 Sample IV(a)與Sample VII (b) 經800℃鍛燒之TEM圖.....103 附圖四 Al-Cl-002未鍛燒樣品之TEM圖………………………….104 附圖五 Al-PF6-002未鍛燒樣品之TEM圖…………………………105 附圖六 Al-Cl-002經500℃鍛燒之TEM圖………………………...106 附圖七 Al-PF6-002經500℃鍛燒之TEM圖………………………107 附圖八 Al-Cl-002經800℃鍛燒之TEM圖………………………..108 附圖九 Al-PF6-002經800℃鍛燒之TEM圖………………………109

    參考文獻
    1. O. V. Al’myasheva, E. N. Korytkova, A. V. Maslov, V. V. Gusarov, Inorg. Mater., 41, 460, 2005

    2. 沙特菲德(Satterfield);王奕凱, 邱宏明, 李秉傑, 非均勻系催化原理與應用, 渤海堂, 臺北巿: 民77

    3. S. C. Kuiry, E. Megen, S. D. Patil, S. A. Deshpande, S. Seal, J. Phys. Chem. B, 109, 3868, 2005

    4. D. Grebille, J. F. BERAR, J. Appl. Cryst., 19, 249, 1986

    5. M. R. Harris, K. S. W. Sing, J. Appl. Chem., 8, 586, 1958

    6. J. N. Armor, J. E. Carlson, J. Mater. Sci., 22, 2549, 1987

    7. D. J. Suh, T. J. Park, J. H. Kim, K. L. Kim, Chem. Mater., 9, 1903, 1997

    8. Z. Zhang, R. W. Hicks, T. R. Pauly, T. J. Pinnavaia, J. Am. Chem. Soc., 124, 1592, 2002

    9. Z. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc., 124, 12294, 2002

    10. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 359, 710, 1992

    11. P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1800, 1914

    12. F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 98, 203, 1951

    13. H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, J. Am Chem. Soc., 97, 3264, 1975

    14. J. S. Wikes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 21, 1263, 1982

    15. J. S. Wilkes, M. J. Zaworotko, J. Chem Soc. Chem. Commun., 965, 1992

    16. K. R. Seddon, A. Stark, M. -J. Torres, Pure Appl. Chem., 72, 2275, 2000

    17. J. G. Huddleston, A. E. Visser, W. M. Reicert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chemistry, 3, 156, 2001

    18. J. D. Holbrey, K. R. Seddon, J. Chem. Soc. Dalton Trans., 2133, 1999

    19. H. L. Ngo, K. Lecompte, L. Hargens, A. B. Mcewen, Thermochimica Acta., 357, 97, 2000

    20. A. Elaiwi, P. B. Hitchcock, K. R. Seddon, N. Srinivasan, Y. -M. Tan, T. Welton, J. A. Zora, J. Chem. Soc. Dalton Trans., 3467, 1995

    21. P. Wasserscheid, T. Welton, Ionic liquids in Synthesis, Wiley-VCH, Weinheim, c 2003.

    22. A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J. Phys. Chem., 88, 2614, 1984

    23. P. Bonhôte, A.P. Dias, N. Papageogiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 35, 1168, 1996

    24. J. S. Wilkes, J. Mol. Cata. A-Chem., 214, 11, 2004

    25. A. B. McEwen, H. L. Ngo, K. Le Compte, J. L. Goldman, J. Electrochem. Soc., 146, 1687, 1999

    26. P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. de Souza, J. Dupont, J. Chim. Phys., 95, 1626, 1998

    27. Y. Chauvin, H. Olivier-Bourbigou, Chemtech, 25, 26, 1995

    28. R. P. Swatloski, S. K. Spear, J. D. Holbrey, J. Am. Chem. Soc., 124, 4974, 2002

    29. C. Ye, W. Liu, Y. Chen, L. Yu, Chem. Commun., 2244, 2001

    30. J. Pernak, K. Sobaszkiewicz, I. Mirska, Green Chemistry, 5, 52, 2003

    31. B. G. Trewyn, C. M.Whitman, V. S. -Y. Lin, Nano Lett., 4, 2139, 2004

    32. T. Nakashima, N. Kimizuka, J. Am .Chem. Soc., 125, 6386, 2003

    33. Y. -J. Zhu, W. -W. Wang, R. -J. Qi, X. -L. Hu, Angew. Chem. Int. Ed., 43, 1410, 2004

    34. Y. Zhou, M. Antonietti, Chem. Mater., 16, 544, 2004

    35. T. F. Baumann, A.E. Gash, S.C. Chinn, A. M. Sawvel, R. S. Maxwell, J. H. Satcher, Jr., Chem. Mater., 17, 395, 2005

    36. R. W. Hicks, T. J. Pinnavaia, Chem. Mater., 15, 78, 2003

    37. H. Hou, Y. Xie, Q. Yang, Q. Guo, C. Tan, Nanotechnology, 16, 741, 2005

    38. J. Zhang, S. Wei, J. Lin, J. Luo, S. Liu, H. Song, E. Elawad, X. Ding, J. Gao, S. Qi, C. T.ang, J. Phys. Chem. B, 110, 21680, 2006

    39. S. Cabrera, J. E. Haskouri, J. Alamo, A. Beltrán, D. Beltrán, S. Mendioroz, M. D. Maecos, P. Amorós, Adv. Mater., 11, 379, 1999

    40. J. A. Toledo, X. Bokhimi, C. Lopez, C. Angeles, F. Hernandez, J. J. Fripiat, J. Mater. Res., 20, 2947, 2005

    41. P. T. Tanev, T. J. Pinnavaia, Chem. Mater., 8, 2068, 1996

    42. K. S. Yoo, T. G. Lee, J. Kim, Micropor. Mesopor. Mater., 84, 211, 2005
    43. K. J. D. MacKenzie, M. E. Suith, Multinuclear Solid-State NMR of Inorganic Materials, Pergamon Press: New York, 2002

    44. S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl., 35, 1102, 1996

    45. J. Aguado, J. M. Escola, M. C. Castro, B. Paredes, Micropor. Mesopor. Mater., 83, 181, 2005

    46. K. Okada, T. Nagashima, Y. Kameshima, A. Yasumori, T. Tsukada, J. Colloid and Interface Sci., 253, 308, 2002

    47. H. -W. Lee, B. -K. Park, M. -Y. Tian, J. -M. Lee, J. Ind. Eng. Chem., 12, 295, 2006

    下載圖示 校內:2008-07-25公開
    校外:2008-07-25公開
    QR CODE