| 研究生: |
黃柏文 Huang, Po-Wen |
|---|---|
| 論文名稱: |
稻田除草機器人之研製 Design and Implementation of a Rice Field Weeding Robot |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 稻田 、除草機器人 、農業自動化 |
| 外文關鍵詞: | Rice Field, Weeding Robot, Agricultural Automation |
| 相關次數: | 點閱:98 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
稻田中使用除草劑,是目前大多數農民的做法,然而,近年來有機農業興起,民眾的環保意識提升下,開始有更多的農民不使用除草劑,不過除草問題依然是必須面對的課題,在炎熱的天氣加上泥濘狀況下之稻田中進行除草,對於農民而言是非常辛苦的事情甚至可能造成熱傷害,如能使用自動化技術處理此問題,將對於環境與農民有益。
本研究針對「稻田除草機器人」進行研製,完成整體設計與實作,並已於國立成功大學工程科學系構裝及系統整合實驗室、台南市黃金海岸與彰化縣秀水鄉金興村自家稻田進行測試,驗證其功能及整體操作順暢度,主要測試項目包括:(1)測試皮帶行走機構順暢度,(2)測試超音波測於迴彎時的偵測成果,(3)測試影像辨識導引表現,(4)測試除草機構可行性(5)驗證機器人整體自走除草執行成果,本研究根據以上測試項目大部份以3D列印完成設計與驗證,實際應用時,部份材料可使用金屬材料製作,以達成實際用途之目的。
本研究成果期能替代目前大部份農民所使用的除草劑與部份有機農業所採取的人工除草,而有助於自動化技術、農業機械及工程科學等相關研究領域的發展。
Currently, many farmers use herbicides in rice fields. However, in recent years, with the rise of organic agriculture and the increase in public awareness of the environmental protection, more farmers have begun not to use herbicides. But weeding is still a big problem that must be faced. Weeding in rice fields under hot weather and muddy conditions is not an easy job for farmers and may even cause heat syndromes. If we can use automated technology to deal with this problem, it will be beneficial to the environment and farmers.
This research has developed a Rice Field Weeding Robot for weeding automation by 3D printing. It has been tested in the Packaging and System Integration Laboratory of the Department of Engineering Science, National Cheng Kung University, the Golden Coast of Tainan City and the author family’s rice field at Jinxing Village, Changhua County. The goal of the tests is to verify the smoothness of its function and overall operation. The main test items include: (1) Test the smoothness of the belt driving mechanism; (2) Test the result of ultrasonic sensor when turning; (3) Test the performance of image recognition with OpenCV; (4) Test the performance of the weeding mechanism and (5) Verification of the overall results of the robot's autonomous weeding. This research is based on the above test items.
The results show that the weeding rate is about 98% and demonstrate the feasibility of the developed robot. The performance can be improved by using stronger materials to replace the 3D printing material adopted in this study.
[1]搓草示意圖,https://greenbox.tw/,查詢時間:2020.06.01 8:00
[2]插秧機示意圖,https://www.stam.com.tw/,查詢時間:2020.06.01 9:00
[3]H. Olsen, "Determination of row position in small-grain crops by analysis of video images", Computers and Electronics in Agriculture,1995,Volume 12, Issue 2, pp. 147-162
[4]J. Marchant and R. Brivot, " Real-Time Tracking of Plant Rows Using a Hough Transform", Real-Time Imaging,1995,Volume 1, Issue 5, pp. 363-371
[5]B. Thomas and H. Jakobsen, "Agricultural Robotic Platform with Four Wheel Steering for Weed Detection", Biosystems Engineering, 2004, 87(2), pp. 125-136.
[6]T. Watanabe, "A duck robot for weeding work on the paddy field", IEEE Conference on Robotics and Automation, 2004. TExCRA Technical Exhibition Based., Minato-ku, Tokyo, Japan, 2004, pp. 81-82
[7] V. Fontaine and T. Crowe, "Development of line-detection algorithm for local positioning in densely seeded crops", Canadian Biosyst. Eng,2006,Volume 48, pp. 7.19-7.29
[8]K. Dang, J. Katupitiya, R. Eaton and N. Kwok, "Modelling and control of the GreenWeeder for crop row tracking", 2009 International Conference on Advanced Robotics, Munich, 2009, pp. 1-6.
[9]M. Tilneac and V. Dolga, "Individual Plant Recognition Using the RGB Color Model", Proceedings of the Mediterranean Electrotechnical Conference - MELECON, 2010, pp. 1147-1152
[10]G. Kim, S. Kim, Y. Hong, K. Han and S. Lee, "A robot platform for unmanned weeding in a paddy field using sensor fusion", 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, 2012, pp. 904-907
[11]C. Qin, Q. Du, L. Tian and X. Huang, "The control system design of automatic weeding robot based on visual navigation", 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, 2012, pp. 956-961
[12]K. Kameyama, Y. Umeda and Y. Hashimoto, "Simulation and experiment study for the navigation of the small autonomous weeding robot in paddy fields", The SICE Annual Conference 2013, Nagoya, Japan, 2013, pp. 1612-1617
[13]B. Yoon and S. Kim, "Design of paddy weeding robot", IEEE ISR 2013, Seoul, 2013, pp. 1-2.
[14]A. Maruyama and K. Naruse, "Development of small weeding robots for rice fields", 2014 IEEE/SICE International Symposium on System Integration, Tokyo, 2014, pp. 99-105
[15]A. Michaels, S. Haug and A. Albert, "Vision-based high-speed manipulation for robotic ultra-precise weed control", 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, 2015, pp. 5498-5505.
[16]K. Choi, S. Han, K. Park, K. Kim and S. Kim, "Vision based guidance line extraction for autonomous weed control robot in paddy field", 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, 2015, pp. 831-836
[17]K. Nakamura, M. Kimura, T. Anazawa, T. Takahashi and K. Naruse, "Investigation of weeding ability and plant damage for rice field weeding robots", 2016 IEEE/SICE International Symposium on System Integration (SII), Sapporo, 2016, pp. 899-905
[18]H. Nakazawa, K. Nakamura and K. Naruse, "Collision identification in weeding robot with acceleration standard deviation", 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, 2016, pp. 2026-2032
[19]O. Barrero, D. Rojas, C. Gonzalez and S. Perdomo, "Weed detection in rice fields using aerial images and neural networks", 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-4
[20]S. Masashi et al., " A Study for Development of Autonomous Paddy-weeding Robot System -An experimentation for autonomously workspace-cognition and counter-rotation turn", Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018, ISBN: 978-1-941968-52-9
[21]W. Winterhalter, F. Fleckenstein, C. Dornhege and W. Burgard, "Crop Row Detection on Tiny Plants With the Pattern Hough Transform", in IEEE Robotics and Automation Letters, Volume 3, no. 4, pp. 3394-3401, Oct. 2018
[22]H. Sori, H. Inoue, H. Hatta and Y. Ando, "Effect for a Paddy Weeding Robot in Wet Rice Culture", Journal of Robotics and Mechatronics, Volume 30, pp. 198-205, Oct. 2018
[23]X. Wu, S. Aravecchia and C. Pradalier, "Design and Implementation of Computer Vision based In-Row Weeding System", 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 4218-4224
[24]N. Chebrolu, P. Lottes, T. Läbe and C. Stachniss, "Robot Localization Based on Aerial Images for Precision Agriculture Tasks in Crop Fields", 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 1787-1793
[25]S. Hussmann, F. Knoll, A. Meissner and T. Holtorf, "Development and evaluation of a low-cost delta robot system for weed control applications in organic farming", 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 2019, pp. 1-5
[26]W. Barbosa et al., "Design and Development of an Autonomous Mobile Robot for Inspection of Soy and Cotton Crops", 2019 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 2019, pp. 557-562
[27]S. Gokul, R. Dhiksith, S. Sundaresh and M. Gopinath, "Gesture Controlled Wireless Agricultural Weeding Robot", 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 926-929
[28]M. Basso and E. Freitas, " A UAV Guidance System Using Crop Row Detection and Line Follower Algorithms ", Journal of Intelligent & Robotic Systems, Volume 97, 2020, pp. 605-621
[29]A. Khan, S. Aziz, M. Bashir and M. Khan, "IoT and Wireless Sensor Network based Autonomous Farming Robot", 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 2020, pp. 1-5,
[30]Y. Ma, W. Zhang and W. Qureshi, " Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control", Journal of Information Processing in Agriculture , 2020, ISSN 2214-3173
[31]OpenCV documentation
https://opencv.org/ 查詢時間:2020.06.14 20:30
[32]王進德(2017)。Raspberry Pi入門與機器人實作應用。 新北市:博碩。
[33]Robert Laganière(2011)。OpenCV2 Computer Vision Application Programming Cookbook。UK:Packt Publishing