| 研究生: |
張芮萁 Chang, Jui-Chi |
|---|---|
| 論文名稱: |
建立地理加權回歸模型評估臺灣濁水溪沖積扇地下水位變化驅動因子 Evaluating the driving factors of groundwater level with Geographically Weighted Regression model in Choushui River Alluvial Fan in Taiwan |
| 指導教授: |
葉信富
Yeh, Hsin-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 地理加權回歸模型 、地下水位 、NDVI 、濁水溪沖積扇 |
| 外文關鍵詞: | Geographically weighted regression model, groundwater level, normalized difference vegetation index, Choushui River |
| 相關次數: | 點閱:177 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣中部濁水溪沖積扇地下水長期過度開發,為了能永續的利用水資源,瞭解影響地下水位變化的主要因子極為重要。本研究以濁水溪沖積扇為研究區域,進行地下水位時間序列分析,瞭解研究區域地下水位是否存在顯著性變化,並透過空間自相關分析Moran’s I指數瞭解地下水位在空間上的特徵,建立地理加權回歸模型探討1999~2019年乾季及濕季地下水位變化的主要影響因子。另外,透過雨水利用效率(Rain Use Efficiency, RUE)來瞭解研究區域降雨提供植被生長所需水量的問題,最後探討標準化植被指數(Normalized Difference Vegetation Index, NDVI)與地下水位埋藏深度(Depth to Groundwater Table, DWT)的相互關係。研究結果顯示,根據Mann-Kendll檢定進行地下水位時間序列分析,濁水溪沖積扇地下水位正面臨顯著性的下降問題,空間自相關分析Moran’s I指數顯示地下水位在乾季及濕季皆有空間正相關性,且有相同的空間分布。地理加權回歸模型分析結果顯示,研究區域乾季地下水位變化以排水密度、坡度、NDVI及降雨等四項因子為主要影響因子,濕季地下水位變化以排水密度、坡度、NDVI及濕潤指數等四項因子為主要影響因子。RUE分析結果顯示濁水溪沖積扇2000年至2019年濕季RUE >1.0的比例大於乾季,且皆集中在研究區域中南部扇頂一帶。以NDVI與DWT相關性分析結果顯示,以研究區域每年5月為最低之平均地下水位,與NDVI在10公尺以內之地下水埋藏深度有最佳相關性,而以每年8月最高之平均地下水位,與NDVI在20公尺以內之地下水埋藏深度有最佳相關性。本研究分析探討濁水溪沖積扇地下水位的變化因素,可以做為日後水資源運用與管理的參考依據。
The groundwater of the Choushui River alluvial fan in Central Taiwan has been overexploited for a long time. It is essential to understand the factors governing changes in groundwater level (GWL) for the use of water resources. In this study, we first conducted a Mann–Kendall test to identify significant trends in the regional GWL and obtained its spatial characteristics using the Moran’s I index in the Choushui River alluvial fan. Furthermore, we established a geographically weighted regression (GWR) model to explore the spatial correlation between natural factors and GWL in dry and wet seasons from 1999 to 2019. The long-term trend analysis shows that the GWL of the Choushui River alluvial fan decline significantly. The Moran’s I index shows that the spatial distribution of GWL had a positive correlation in both dry and wet seasons. GWR model indicate that the GWL are affected by drainage density (Dd), slope (S), normalized difference vegetation index (NDVI), and precipitation (P) during the dry season, while Dd, S, NDVI, and wetness index (WI) have an effect on the GWL during the wet season. These results can not only describe the model applicability for exploring the relationship between natural factors and GWL but also be used as references for future regional water resource utilization and management.
Ainiwaer, M., Ding, J., Wang, J., & Nasierding, N. (2019). Spatiotemporal dynamics of water table depth associated with changing agricultural land use in an arid zone oasis. Water, 11(4), 673.
Asoka, A., & Mishra, V. (2021). A strong linkage between seasonal crop growth and groundwater storage variability in India. Journal of Hydrometeorology, 22(1), 125-138.
Boas, I., Biermann, F., & Kanie, N. (2016). Cross-sectoral strategies in global sustainability governance: towards a nexus approach. International Environmental Agreements: Politics, Law and Economics, 16(3), 449-464.
Boots, B. (2003). Geographically weighted regression: The analysis of spatially varying relationships. In: TAYLOR & FRANCIS LTD 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON ….
Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical analysis, 28(4), 281-298.
Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431-443.
Burke, J. J., & Moench, M. H. (2000). Groundwater and society: resources, tensions and opportunities. Themes in groundwater management for the twenty-first century: Department of International Economic and Social Affairs, Statistical Office ….
Chang, L.-C. (2009). Hydrogeology investigation and groundwater resource assessment for Taiwan : Groundwater recharge estimation and model simulation (1/4).
Chang, M., Huang, R.-C., & Wu, P.-K. (2019). In-Situ Monitoring of Ground Subsidence at the Intersection of Expwy 78 and High Speed Rail of Taiwan During 2003–2011. Paper presented at the International Congress and Exhibition" Sustainable Civil Infrastructures”.
Chen, Y.-A., Chang, C.-P., Hung, W.-C., Yen, J.-Y., Lu, C.-H., & Hwang, C. (2021). Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing, 13(12), 2281.
Chowdhury, A., Jha, M., Chowdary, V., & Mal, B. (2009). Integrated remote sensing and GIS‐based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International journal of remote sensing, 30(1), 231-250.
Chu, H.-J., & Burbey, T. J. (2022). Estimating future (next-month’s) spatial groundwater response from current regional pumping and precipitation rates. Journal of Hydrology, 604, 127160.
Condon, L. E., Maxwell, R. M., & Gangopadhyay, S. (2013). The impact of subsurface conceptualization on land energy fluxes. Advances in Water Resources, 60, 188-203.
Conti, K., Velis, M., Antoniou, A., & Nijsten, G.-J. (2016). Groundwater in the context of the Sustainable Development Goals: Fundamental policy considerations. Br. GSDR, 5, 111-133.
Council, N. R. (2001). Basic research opportunities in earth science: national academies Press.
Duran-Llacer, I., Munizaga, J., Arumí, J. L., Ruybal, C., Aguayo, M., Sáez-Carrillo, K., Arriagada, L., & Rojas, O. (2020). Lessons to be learned: Groundwater depletion in Chile’s Ligua and Petorca watersheds through an Interdisciplinary approach. Water, 12(9), 2446.
Ebrahimi, A., Nazemosadat, S., Motamedvaziri, B., & Ahmadi, H. (2021). Land Use-Land Cover Change and Its Relationships with the Groundwater Table and the Plants’ Altitudinal Zones: A Case Study of Arsanjan County, Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(3), 1891-1907.
Ferguson, I. M., & Maxwell, R. M. (2010). Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resources Research, 46(10).
Foody, G. (2003). Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–rainfall relationship. Remote sensing of environment, 88(3), 283-293.
Foster, S., Chilton, J., Nijsten, G.-J., & Richts, A. (2013). Groundwater—a global focus on the ‘local resource’. Current opinion in environmental sustainability, 5(6), 685-695.
Fu, G., Crosbie, R. S., Barron, O., Charles, S. P., Dawes, W., Shi, X., Van Niel, T., & Li, C. (2019). Attributing variations of temporal and spatial groundwater recharge: A statistical analysis of climatic and non-climatic factors. Journal of Hydrology, 568, 816-834.
Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486.
Galloway, D. L., & Sneed, M. (2013). Analysis and simulation of regional subsidence accompanying groundwater abstraction and compaction of susceptible aquifer systems in the USA. Boletín de la Sociedad Geológica Mexicana, 65(1), 123-136.
Gao, J., & Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Applied Geography, 31(1), 292-302.
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., & Noble, I. (2013). Sustainable development goals for people and planet. Nature, 495(7441), 305-307.
Gupta, J., & Vegelin, C. (2016). Sustainable development goals and inclusive development. International Environmental Agreements: Politics, Law and Economics, 16(3), 433-448.
Haddad, M., Feitelson, E., & Arlosoroff, S. (2001). The management of shared aquifers. In Management of Shared Groundwater Resources (pp. 3-23): Springer.
Hao, Z., Zhao, H., Zhang, C., Zhou, H., Zhao, H., & Wang, H. (2019). Correlation analysis between groundwater decline trend and human-induced factors in Bashang Region. Water, 11(3), 473.
Howard, K. W. (2015). Sustainable cities and the groundwater governance challenge. Environmental Earth Sciences, 73(6), 2543-2554.
Hsu, W.-C., Chang, H.-C., Chang, K.-T., Lin, E.-K., Liu, J.-K., & Liou, Y.-A. (2015). Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote Sensing, 7(6), 8202-8223.
Hung, W.-C., Hwang, C., Chang, C.-P., Yen, J.-Y., Liu, C.-H., & Yang, W.-H. (2010). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548.
Hurvich, C. M., Simonoff, J. S., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2), 271-293.
Hwang, C., Hung, W.-C., & Liu, C.-H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural hazards, 47(1), 1-16.
Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C., Galloway, D. L., Sneed, M., Hung, W.-C., Cheng, Y.-S., & Li, F. (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific Reports, 6(1), 1-12.
Jeanne, P., Farr, T. G., Rutqvist, J., & Vasco, D. W. (2019). Role of agricultural activity on land subsidence in the San Joaquin Valley, California. Journal of Hydrology, 569, 462-469.
Kendall, M. G. (1975). Multivariate analysis (Vol. 2): Griffin London.
Kløve, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., & Kvœrner, J. (2011). Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environmental Science & Policy, 14(7), 770-781.
Kupfer, J. A., & Farris, C. A. (2007). Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landscape Ecology, 22(6), 837-852.
Lacombe, G., McCartney, M., & Forkuor, G. (2012). Drying climate in Ghana over the period 1960–2005: evidence from the resampling-based Mann-Kendall test at local and regional levels. Hydrological sciences journal, 57(8), 1594-1609.
Li, H., Lu, Y., Zheng, C., Zhang, X., Zhou, B., & Wu, J. (2020). Seasonal and inter-Annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: a case study in Yaoba Oasis, Northwest China. Water, 12(1), 303.
Lin, M., Biswas, A., & Bennett, E. M. (2020). Socio-ecological determinants on spatio-temporal changes of groundwater in the Yellow River Basin, China. Science of the total environment, 731, 138725.
Liu, C. W. (2004). DECISION SUPPORT SYSTEM FOR MANAGING GROUND WATER RESOURCES IN THE CHOUSHUI RIVER ALLUVIAL IN TAIWAN 1. JAWRA Journal of the American Water Resources Association, 40(2), 431-442.
Llamas, M. R., & Martínez-Santos, P. (2005). Intensive groundwater use: silent revolution and potential source of social conflicts. In: American Society of Civil Engineers.
Machard de Gramont, H., Noel, C., Oliver, J., Pennequin, D., Rama, M., & Stephan, R. (2011). Towards a joint management of transboundary aquifer systems. Methodological guidebook (available in English and in French). Collection ‘À Savoir(3).
Mahmoudi, P., Shirazi, S. A., Amir Jahanshahi, S. M., Firoozi, F., & Mazhar, N. (2021). DETECTION OF LONG-TERM VEGETATION DEGRADATION IN BALUCHISTAN IN SOUTHWEST ASIA USING NDVI PRODUCTS OF THE MODIS SENSOR OF TERRA SATELLITE. Environmental Engineering & Management Journal (EEMJ), 20(2).
Maihemuti, B., Simayi, Z., Alifujiang, Y., Aishan, T., Abliz, A., & Aierken, G. (2021). Development and evaluation of the soil water balance model in an inland arid delta oasis: Implications for sustainable groundwater resource management. Global Ecology and Conservation, 25, e01408.
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
Maxwell, R. M., & Kollet, S. J. (2008). Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geoscience, 1(10), 665-669.
Miller, J. A., & Hanham, R. Q. (2011). Spatial nonstationarity and the scale of species–environment relationships in the Mojave Desert, California, USA. International Journal of Geographical Information Science, 25(3), 423-438.
Moench, M. (2003). Groundwater and poverty: exploring the connections. Intensive use of groundwater: Challenges and opportunities, 441-456.
Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17-23.
Mulyadi, A., Dede, M., & Widiawaty, M. A. (2020). Spatial interaction of groundwater and surface topographic using geographically weighted regression in built-up area. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Odgaard, M. V., Bøcher, P. K., Dalgaard, T., Moeslund, J. E., & Svenning, J.-C. (2014). Human-driven topographic effects on the distribution of forest in a flat, lowland agricultural region. Journal of Geographical Sciences, 24(1), 76-92.
Ojeda Olivares, E. A., Sandoval Torres, S., Belmonte Jiménez, S. I., Campos Enríquez, J. O., Zignol, F., Reygadas, Y., & Tiefenbacher, J. P. (2019). Climate change, land use/land cover change, and population growth as drivers of groundwater depletion in the Central Valleys, Oaxaca, Mexico. Remote Sensing, 11(11), 1290.
Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2020). Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Scientific Reports, 10(1), 1-19.
Rihani, J. F., Maxwell, R. M., & Chow, F. K. (2010). Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resources Research, 46(12).
Sharma, A. K., Hubert-Moy, L., Buvaneshwari, S., Sekhar, M., Ruiz, L., Moger, H., Bandyopadhyay, S., & Corgne, S. (2021). Identifying seasonal groundwater-irrigated cropland using multi-source NDVI time-series images. Remote Sensing, 13(10), 1960.
Shi, Y., Davis, K. J., Duffy, C. J., & Yu, X. (2013). Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory. Journal of Hydrometeorology, 14(5), 1401-1420.
Siebert, S., Burke, J., Faures, J.-M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation—a global inventory. Hydrology and Earth System Sciences, 14(10), 1863-1880.
Stafford-Smith, M., Griggs, D., Gaffney, O., Ullah, F., Reyers, B., Kanie, N., Stigson, B., Shrivastava, P., Leach, M., & O’Connell, D. (2017). Integration: the key to implementing the Sustainable Development Goals. Sustainability science, 12(6), 911-919.
Su, S., Xiao, R., & Zhang, Y. (2012). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32(2), 360-375.
Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., & Giosan, L. (2009). Sinking deltas due to human activities. Nature Geoscience, 2(10), 681-686.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., & Edmunds, M. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329.
Van Huijgevoort, M. H., Voortman, B. R., Rijpkema, S., Nijhuis, K. H., & Witte, J.-P. M. (2020). Influence of climate and land use change on the groundwater system of the Veluwe, The Netherlands: A historical and future perspective. Water, 12(10), 2866.
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters, 37(20).
Wang, T.-Y., Wang, P., Zhang, Y.-C., Yu, J.-J., Du, C.-Y., & Fang, Y.-H. (2019). Contrasting groundwater depletion patterns induced by anthropogenic and climate-driven factors on Alxa Plateau, northwestern China. Journal of Hydrology, 576, 262-272.
Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582-2592.
Wu, Y., Yang, G., Tian, L., Gu, X., Li, X., He, X., Xue, L., Li, P., & Xiao, S. (2021). Spatiotemporal variation in groundwater level within the Manas River Basin, Northwest China: Relative impacts of natural and human factors. Open geosciences, 13(1), 626-638.
Xia, J., Wu, X., Zhan, C., Qiao, Y., Hong, S., Yang, P., & Zou, L. (2019). Evaluating the dynamics of groundwater depletion for an arid land in the Tarim Basin, China. Water, 11(2), 186.
Xinqiang, D., Kaiyang, C., & Xiangqin, L. (2020). Characteristics and causes of groundwater dynamic changes in Naoli River Plain, Northeast China. Water Supply, 20(7), 2603-2615.
Xu, W., & Su, X. (2019). Challenges and impacts of climate change and human activities on groundwater-dependent ecosystems in arid areas–A case study of the Nalenggele alluvial fan in NW China. Journal of Hydrology, 573, 376-385.
Yang, Y.-J., Hwang, C., Hung, W.-C., Fuhrmann, T., Chen, Y.-A., & Wei, S.-H. (2019). Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
經濟部水利署,(2017),106年度彰化及雲林地區地層下陷監測及分析,臺北市:經濟部水利署