簡易檢索 / 詳目顯示

研究生: 游智翔
You, Zhi-Xiang
論文名稱: 結合多目標與基因演算法求解於生產排程問題-以鍛造輪圈加工廠為例
A Multi-objective Hybrid Genetic Algorithm for Production Scheduling - The Case Study of Forged Wheels Industry
指導教授: 王宏鍇
Wang, Hung-Kai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 等效平行機台排程最佳化單站點MNSGAIITOPSIS
外文關鍵詞: Identical Parallel Machine, Scheduling optimization, Single stage, MNSGAII, TOPSIS
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因全球高級豪華車近年來銷售成長逐漸上升,其間接提高零組件輪框加工廠的生產產量。本研究之案例公司為一家全球頂級鍛造鋁輪圈製造廠,目前生產排程方式依舊採傳統人為經驗法則並利用Excel工具進行人工作業派工,在資源有限下須考量整體場域限制及多目標績效指標,人為派工常導致生產排程績效不佳,此外輪框加工廠中主要分為四道製程,其中機加工站點第三小站(OP3)屬於瓶頸站點,若安排派工不當,常因一環節有所延誤導致後續生產環節物料遲延生產,使得後段機台產能容易造成閒置,造成極大成本損失,生產管理者欲了解在滿足訂單交期狀態下,須開幾台銑床機台較能滿足此訂單生產需求,期望透過開發一套修正多目標基因演算法求解於鋁輪圈加工廠瓶頸單站點問題,使得最小化機台數、總延誤時間、總換模時間。研究方法主要將既有文獻方法借以改善混合多目標基因演算法,並透過NSGAII以及TOPSIS尋求最佳解,其中為了能快速搜尋目標解空間以及跳出區域最佳解,將演算法的交配及突變率採用每20代動態修正法。在實證研究中,透過2種修正多目標基因演算法搭配不同加工排序編碼進行實驗,根據訂單到期日最近的優先處理編碼方式與傳統兩段隨機亂數生成指派機台及加工排序編碼比較,在此研究中能改善總延誤時間及換模時間至少25%左右,並提供適當開機機台數,且利用多準則決策方法論找出最適妥協解方案,能有效改善傳統人工作業效率並求得近似解方案。

    Due to the gradual increase in the global sales of luxury cars in recent years, it indirectly increases the production of component wheel frame processing plants. The case company of this study is a world's top aluminum ring forging factory. At present, the production scheduling method still adopts the traditional human rule of thumb and dispatching by Excel tool. Under the limited resources, the overall field limitation and multi-objective performance indicators must be considered. In addition, the wheel and frame processing plant is mainly divided into four processes, and the third stage of the machine processing stage is a bottleneck stage. If the scheduling is inappropriate, the material production in the subsequent production link will be delayed due to the delay in one link, which makes the capacity of the machine in the latter section easy to be idle, resulting in great cost loss. The production manager wants to know how many machines must be started to meet the production demand of the order under the condition of meeting the delivery time, and expects to develop a modified multi-objective genetic algorithm to solve the bottleneck single stage problem in aluminum ring processing plant, so as to minimize the number of machines, total delay time and total setup time. The research methods mainly used existing literature methods to improve the current multi- objective genetic algorithm, and sought the best solution through NSGAII and TOPSIS. In order to quickly search the target solution space and jump out of the regional best solution, the crossover and mutation rate of the algorithm were dynamically modified every 20 generations. In empirical study, through two kinds of modified multi-objective genetic algorithm with different processing sort coding experiments, according to the order EDD sort coding method and the traditional two random random number assigned to the machine and the processing sequence generated code comparison, in this study can improve the total delay time and the time of the mould at least 25% and provide proper boot up the machine number, The multi-criteria decision-making methodology(MCDM) is used to find the optimal compromise solution, which can effectively improve the efficiency of traditional manual operation and obtain the approximate solution.

    摘要 i Extended Abstract ii 誌謝 iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景、動機與重要性 1 1.2 研究目的 4 1.3 論文架構 5 第二章 文獻回顧 6 2.1 鋁輪圈加工製程 6 2.2 排程問題之作業型態 9 2.2.1 單站點排程作業 9 2.2.2 多站點排程作業 13 2.3 基因演算法與多準則決策方法 16 2.3.1 基因演算法 16 2.3.2 非凌越排序基因演算法 23 2.3.3 理想解相似度順序偏好法 26 第三章 研究方法 29 3.1 研究架構 29 3.2 問題定義與假設 30 3.3 混合式NSGAII演算法 33 3.4 前插法 37 第四章 實證研究 39 4.1案例公司背景 39 4.2模式求解方法與流程 40 4.3測試資料產生 41 4.4演算法及派工設計 46 4.5實驗參數設定說明 48 4.6作業環境與實驗結果分析 49 第五章 結論與未來研究方向 69 參考文獻 70

    經濟部統計處(2022),Available: https://www.moea.gov.tw/MNS/dos/home/Home.aspx
    李沛倚(2021)。應用多目標基因演算法於平準化生產-以鍛造輪圈加工廠為例。國立成功大學製造資訊與系統研究所碩士論文。
    Anghinolfi, D., Paolucci, M., & Ronco, R. (2021), "A bi-objective heuristic approach for green identical parallel machine scheduling," European Journal of Operational Research, 289,2, 416-434.
    Arroyo, J. E. C., & Leung, J. Y. T. (2017), "An effective iterated greedy algorithm for scheduling unrelated parallel batch machines with non-identical capacities and unequal ready times," Computers & Industrial Engineering, 105,84-100.
    Asadi-Gangraj, E. (2019), "METAHEURISTIC ALGORITHMS FOR FLEXIBLE FLOW SHOP SCHEDULING PROBLEM WITH UNRELATED PARALLEL MACHINES," International Journal of Industrial Engineering-Theory Applications and Practice, 26,6, 850-865.
    Balakrishnan, N., Kanet, J. J., & Sridharan, V. (1999), "Early/tardy scheduling with sequence dependent setups on uniform parallel machines," Computers & Operations Research, 26,2, 127-141.
    Chaudhry, I. A., & Elbadawi, I. A. Q. (2017), "Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm," Sadhana-Academy Proceedings in Engineering Sciences, 42,1, 11-21.
    Chen, J., Ning, T., Xu, G. Y., & Liu, Y. (2022), "A memetic algorithm for energy-efficient scheduling of integrated production and shipping," International Journal of Computer Integrated Manufacturing, 23.
    Cheng, R. W., Gen, M., & Tsujimura, Y. (1996), "A tutorial survey of job-shop scheduling problems using genetic algorithms .1. Representation," Computers & Industrial Engineering, 30,4, 983-997.
    Chien, C. F., Tseng, F. P., & Chen, C. H. (2008), "An evolutionary approach to rehabilitation patient scheduling: A case study," European Journal of Operational Research, 189,3, 1234-1253.
    Colak, M., & Keskin, G. A. (2022), "An extensive and systematic literature review for hybrid flowshop scheduling problems," International Journal of Industrial Engineering Computations, 13,2, 185-222.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, 6,2, 182-197.
    Diana, R. O. M., & de Souza, S. R. (2020), "Analysis of variable neighborhood descent as a local search operator for total weighted tardiness problem on unrelated parallel machines," Computers & Operations Research, 117,16.
    Eroglu, D. Y., Ozmutlu, H. C., & Ozmutlu, S. (2014), "Genetic algorithm with local search for the unrelated parallel machine scheduling problem with sequence-dependent set-up times," International Journal of Production Research, 52,19, 5841-5856.
    Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning,
    Holland, J. H. (1975). Adaptation in natural and artificial systems.
    Hong, T. Y., Chien, C. F., Wang, H. K., & Guo, H. Z. (2018), "A two-phase decoding genetic algorithm for TFT-LCD array photolithography stage scheduling problem with constrained waiting time," Computers & Industrial Engineering, 125,200-211.
    Hwang, C.-L., & Yoon, K. (1981), Multiple Attribute Decision Making Methods and Applications,Berlin, Heidelberg
    Jiang, L., Pei, J., Liu, X. B., Pardalos, P. M., Yang, Y. J., & Qian, X. F. (2017), "Uniform parallel batch machines scheduling considering transportation using a hybrid DPSO-GA algorithm," International Journal of Advanced Manufacturing Technology, 89,5-8, 1887-1900.
    Li, X. H., Chehade, H., Yalaoui, F., & Amodeo, L. (2012), "Fuzzy Logic Controller Based Multiobjective Metaheuristics to Solve a Parallel Machines Scheduling Problem," Journal of Multiple-Valued Logic and Soft Computing, 18,5-6, 617-636.
    Liang, Y. C., Hsiao, Y. M., & Tien, C. Y. (2013), "Metaheuristics for drilling operation scheduling in Taiwan PCB industries," International Journal of Production Economics, 141,1, 189-198.
    Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs,Berlin, Heidelberg
    Min, L., & Cheng, W. (1999), "A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines," Artificial Intelligence in Engineering, 13,4, 399-403.
    Min, L., & Cheng, W. (2006), "Genetic algorithms for the optimal common due date assignment and the optimal scheduling policy in parallel machine earliness/tardiness scheduling problems," Robotics and Computer-Integrated Manufacturing, 22,4, 279-287.
    Mitsuo Gen, R. C. (1996), Genetic Algorithms and Engineering Design,
    Mouzon, G., & Yildirim, M. B. (2008), "A framework to minimise total energy consumption and total tardiness on a single machine," International Journal of Sustainable Engineering, 1,105 - 116.
    Niu, Q., Zhou, T. J., & Wang, L. (2010), "A hybrid particle swarm optimization for parallel machine total tardiness scheduling," International Journal of Advanced Manufacturing Technology, 49,5-8, 723-739.
    Pinedo, M. L. (2012), Scheduling,
    Queiroz, T. A., & Mundim, L. R. (2020), "Multiobjective pseudo-variable neighborhood descent for a bicriteria parallel machine scheduling problem with setup time," International Transactions in Operational Research, 27,3, 1478-1500.
    Sivrikaya-Serifoglu, F., & Ulusoy, G. (1999), "Parallel machine scheduling with earliness and tardiness penalties," Computers & Operations Research, 26,8, 773-787.
    Soares, L. C. R., & Carvalho, M. A. M. (2020), "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, 285,3, 955-964.
    Tanaev, V. S., Gordon, W., & Shafransky, Y. M. (1994), Scheduling theory. Single-stage systems,
    Tanaev, V. S., Sotskov, Y. N., & Strusevich, V. A. (1994). Scheduling Theory: Multi-Stage Systems.
    urasevi, M., & Jakobovi, D. (2021). Heuristic and metaheuristic methods for the unrelated machines scheduling problem: A survey. arXiv.
    Vallada, E., & Ruiz, R. (2011), "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, 211,3, 612-622.
    Vanwassenhove, L. N., & Baker, K. R. (1982), "A BICRITERION APPROACH TO TIME COST TRADE-OFFS IN SEQUENCING," European Journal of Operational Research, 11,1, 48-54.
    Wang, H.-K., Chien, C.-F., & Chou, C.-W. (2017), "An empirical study of bio manufacturing for the scheduling of hepatitis in vitro diagnostic device with constrained process time window," Computers & Industrial Engineering, 114,31-44.
    Wang, H. K., Chien, C. F., & Gen, M. S. (2015), "An Algorithm of Multi-Subpopulation Parameters With Hybrid Estimation of Distribution for Semiconductor Scheduling With Constrained Waiting Time," Ieee Transactions on Semiconductor Manufacturing, 28,3, 353-366.
    Wang, S. J., Wang, X. D., Yu, J. B., Ma, S., & Liu, M. (2018), "Bi-objective identical parallel machine scheduling to minimize total energy consumption and makespan," Journal of Cleaner Production, 193,424-440.

    無法下載圖示 校內:2027-08-25公開
    校外:2027-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE