| 研究生: |
李明哲 Che, Ming |
|---|---|
| 論文名稱: |
具語意感知的個人化之學習元件擷取與推薦系統 A Semantic-Aware Framework for Personalized Learning Objects Retrieval & Recommendation |
| 指導教授: |
王宗一
Wang, T. I. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 學習元件 、數位學習 、語意 、推薦 |
| 外文關鍵詞: | Ontology, Reommendation, e-Learning, Semantic, Learning Object |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「數位學習」指的是以數位工具,透過有線或無線網路,取得數位教材,進行線上或離線之學習活動。因而數位學習產業涵括數位學習工具(載具及輔具)研發、數位學習網路環境建置、數位教材內容開發、以及數位學習活動的設計等。目前國際上已有許多流通的標準,其中針對"學習元件(Learning Object)"與"學習元件元資料(Learning Object Metadata, LOM)",在國際間最具份量的標準為美國國防部ADL 的SCORM(Sharable Content Object Reference Model)的規格,此規格已被國內各研究單位與產業界廣泛採用。
SCORM-LOM是一種”描述學習元件資料”的資料,其制定的目的便是希望每一個共享的學習元件可被有效的描述與搜尋。但LOM的標籤只是一種靜態的描述格式,在共享學習元件搜尋系統的設計上,若只用此分類當作搜尋的依據,則此搜尋系統只具備關鍵字比對(keyword match)的能力,缺乏語意搜尋(semantic search)與檢索推論(query reasoning)的能力。且LOM所制定的元資料的項目數量過於龐大,原則上很難要求使用者具備這些背景知識。另一方面,若系統只提供上層LOM欄位供學習者檢索,則搜尋數量可能過於龐大而缺乏精確性。有鑑於上述教學元件元資料在實際搜尋應用上的困難,本論文設計了一高效能且具備語意搜尋與檢索推論能力之共享學習元件搜尋推薦系統。在使用者的檢索語句設計上,有鑒於使用者未必具被所需之學習元件的背景知識,因此其所輸入的檢索詞彙未必是最適合使用者的需求。在此我們將使用LOM辭書的概念階層樹,配合查詢擴展(Query Expansion)與學習元件協同推薦演算法,將使用者的查詢檢索結果做最精確的調整。
With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM has a deficiency in semantic-awareness capability. Most LOM-based learning object retrieval mechanisms just provide keyword-based search. This thesis proposes an ontology-based framework for establishing personalized learning objects retrieval and recommendation. The personalization functionality is provided by the probabilistic semantic inferring of query terms, LOM-based user preference, and collaborative feedback. An ontology query expansion algorithm and an integrated learning objects ranking algorithm are proposed. Focused on digital learning material and contrasted to other traditional keyword-based search technologies, the proposed approach has shown significant improvement in retrieval precision, recall rate, and ranking performance.
[1] A. Bernaras, I. Laresgoiti, and J. Corera, "Building and Reusing Ontologies for Electrical Network Applications", in Proc. of the European Conference on Artificial Intelligence, 1996.
[2] ACM Computing Classification Systems, Available at:
http://www.acm.org/class/.
[3] Advanced Distributed Learning (ADL), Availavle at: http://www.adlnet.org/.
[4] A.F. Smeaton, and C.J. Rijsbergen, "The retrieval effects of query expansion on a feedback document retrieval system", The Computer Journal, Vol. 26, No. 3, pp. 239-246, 1993.
[5] AIFB, Availavle at: http://www.aifb.uni-karlsruhe.de
[6] A. Gomez-Perez, "A Framework to Verify Knowledge Sharing Technology", Expert Systems with Application, Vol. 11, No. 4, pp. 519-529, 1996.
[7] Apache Tomcat, Available at: http://tomcat.apache.org/.
[8] A. Popescul, L.H. Ungar, D.M. Pennock, and S. Lawernce, "Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments", in Proc. of 17th Conference on Uncertainty in Artificial Intelligence, pp. 437-444, 2001.
[9] Aviation Industry CBT Committee (AICC), Available at: http://www.aicc.org/.
[10] COL, Available at: http://www.col.org.
[11] Computing Curricula of The Joint IEEE Computer Society/ACM Task Force, Available at: http://www.computer.org/education/cc2001/.
[12] DAML ontology library, Available at: http://www.daml.org/ontologies/
[13] D. Harman, "Overview of the Fourth Text Retrieval Conference (TREC-4)", in Proc. of TREC-4, pp. 1-24, 1995.
[14] D.L. McGuinness, R. Fikes, J. Rice, and S. Wilder, "An Environment for Merging and Testing Large Ontologies", in Proc. of the Seventh International Conference on Knowledge Representation (KR2000), pp. 483-493, 2000.
[15] DMOZ, Available at: http://www.dmoz.org
[16] Eclipse Foundation, Available at: http://www.eclipse.org/.
[17] EXtensible Markup Language (XML), Available at: http://www.w3.org/XML/.
[18] G. Salton and M. McGill, "Introduction to Modern Information Retrieval", McGraw-Hill New York, 1983.
[19] H. Cui, J.R. Wen, J.Y. Nie, and W.Y. Ma, "Query Expansion by Mining User Logs", IEEE Transaction on Knowledge and Data Engineering, Vol. 15, No. 4, pp. 829-839, 2003.
[20] HP Labs Semantic Web Research, Available at: http://www.hpl.hp.com/semweb/.
[21] IEEE 1484.12.1-2002 LOM v1.0, Available at:
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf.
[22] IEEE LTSC 1484.12.1 (IEEE Learning Technologies Standardization Committee), Available at: http://ltsc.ieee.org/wg12/.
[23] IMS Global Learning Consortium - Instructional Management System (IMS), Available at: http://www.imsglobal.org.
[24] I. Soboroff and C. Nicholas, "Combining Content and Collaboration in Text Filtering", in Proc. of International Joint Conference on Artificial Intelligence Workshop: Machine Learning for Information Filtering, pp. 86-91, 1999.
[25] J.A. Hanley and B.J. Mcneil, "The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve", Radiology 143, pp. 29-36, 1982.
[26] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, and J. Riedl, "GroupLens: Applying Collaborative Filtering to Usenet News", Communication of ACM, Vol. 40, No. 3, pp. 77-87, 1997.
[27] J. Davies, D. Fensel, and F. van Harmelen, "Towards the Semantic Web: Ontology-Driven Knowledge Management", John Wiley & Sons, ISBN 0-470-84867-7, 2003.
[28] J. Herlocker, J. Konstan, L. Terveen, and J. Reidl, "Evaluating collaborative filtering recommender systems", ACM Transactions on Information Systems, pp. 5-53, 2004.
[29] J.S. Breese, D. Heckerman, and C. Kadie, "Empirical analysis of predictive algorithms for collaborative filtering", in Proc. of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI'98), pp. 43-52, 1998.
[30] K. Breitman, and J. Leite, "Ontology as a Requirement Engineering Product", in Proc. of the 11th IEEE International Requirements Engineering Conference, pp. 309-319, 2003.
[31] K.M. Sim, and P.T. Wang, "Toward agency and ontology for web-based information retrieval", IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol. 34, No. 3, pp. 257-269, 2004.
[32] Layers of Web technologies and standards, Available at:
http://www.w3.org/2001/12/ semweb-fin/w3csw.
[33] L. Khan, D. McLeod, and E. Hovy, "Retrieval effectiveness of an ontology-based model for information selection", The VLDB Journal, pp.71-85, 2004.
[34] L.M. Deborah, "Ontologies Come of Age. Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential, MIT Press, 2001.
[35] M.C. Daconta, L.J. Obrst, and K.T. Smith, "The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management", John Wiley & Sons, ISBN 0-471-43257-1, 2003.
[36] M.C. Lee, D.Y. Ye, and T.I. Wang, "Java Learning Object Ontology", in Proc. of The 5th IEEE International Conference on Advanced Learning Technologies (ICALT'05), pp. 538-542, 2005.
[37] MERLOT, Available at: http://www.merlot.org.
[38] M. Nilsson, "IMS Metadata RDF Binding Guide", Available at:
http://kmr.nada.kth.se/el/ims/metadata.html.
[39] M. Uschold, and M. Gruninger, "Ontologies: principles, methods, and applications", Knowledge Engineering Review, Vol. 11, No. 2, pp. 93-155, 1996.
[40] N. Belkin and B. Croft, "Information Filtering and Information Retrieval", Communication of ACM, Vol. 35, No. 12, pp. 29-37, 1999.
[41] NEEDS, Available at: http://www.needs.org.
[42] N. Guarion, C. Masolo, and G. Vetere, "OntoSeek: Content-based access to the web", IEEE Intelligent Systems, pp. 70-80, 1999.
[43] OntoBroker, Available at: http://ontobroker.semanticweb.org/
[44] On-To-Knowledge, Available at: http://www.ontoknowledge.org/
[45] Ontolingua, Available at: http://www.ksl.stanford.edu/software/ontolingua/
[46] Ontology Development 101, Available at:
http://protege.stanford.edu/publications/ontology_development/ontology101.html.
[47] OntoPrise, Available at: http://www.ontoprise.de/
[48] Ontoweb, Available at: http://ontoweb.org/
[49] OWL 1.1 Web Ontology Language Overview, Available at:
http://owl1_1.cs.manchester.ac.uk/overview.html.
[50] OWL Web Ontology Language, Available at: http://www.w3.org/TR/owl-ref/.
[51] P. Melville, R.J. Mooney, and R. Nagarajan, "Content-Boosted Collaborative Filtering for Improved Recommendations", in Proc. of the 18th National Conference on Artificial Intelligence (AAAI'02), pp. 187-192, 2002.
[52] Protg, Available at: http://protege.stanford.edu/.
[53] RDF Schema, Available at: http://www.w3.org/TR/rdf-schema/.
[54] Resource Description Framework (RDF), Available at: http://www.w3.org/RDF/.
[55] R. Jin, L. Si, and C. Zhai, "Preference-Based Graphic Models for Collaborative Filtering", in Proc. of 19th Conference on Uncertainty in Artificial Intelligence (UAI'03), pp. 329-336, 2003.
[56] R.J. Mooney and L. Roy, "Content-Based Book Recommending Using Learning for Text Categorization", in Proc. of the Fifth ACM Conference on Digital Libraries, pp. 195-204, 2000.
[57] RosettaNet, Available at: http://www.rosettanet.org
[58] Semantics, Available at: http://en.wikipedia.org/wiki/Semantics
[59] Sharable Courseware Object Reference Model (SCORM), Available at:
http://www.adlnet.org.
[60] S. Steffen and S. Rudi, "Handbook on Ontologies", Heidelberg: Springer Verlag, ISBN 3-540-40834-7, 2004.
[61] T.B. Lee, J. Hendler, and O. Lassila, "The semantic web", Scientific American, 2001.
[62] The Alliance of Remote Instructional Authoring and Distribution networks for Europe (ARIADNE), Available at: http://ariadne.unil.ch/.
[63] The Dublin Core Metadata Initative, Available at: http://dublincore.org/.
[64] The Java Tutorial, Available at: http://java.sun.com/docs/books/tutorial/.
[65] The Porter Stemming Algorithm, Available at:
http://www.tartarus.org/martin/PorterStemmer/.
[66] T. Hofmann, "Collaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis", in Proc. of 26th ACM SIGIR Conference, pp. 259-266, 2003.
[67] T. Hofmann, "Latent Semantic Models for Collaborative Filtering", ACM Transactions on Information Systems, Vol. 22, No. 1, pp. 89-115, 2004.
[68] T.R. Gruber, "A translation approach to portable ontology specifications". Knowledge Acquisition, Vol. 5, pp. 199-220, 1993.
[69] T.R. Rothenfluh, J.H. Gennari, H. Eriksson, A.R. Puerta, S.W. Tu, and M.A. Musen, "Reusable ontologies, knowledge-acquisition tools, and performance systems: PROTG-II solutions to Sisyphus-2", International Journal of Human-Computer Studies, pp. 303-332, 1996.
[70] T. Tran and R. Cohen, "Hybrid Recommender Systems for Electronic Commerce", in Proc. of Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, Technical Report WS-00-04, AAAI Press, pp. 78-83, 2002.
[71] UNSPSC, Available at: http://www.unspsc.org
[72] V. Geroimenko and C. Chen, "Visualizing the Semantic Web", Springer Verlag, ISBN 1-85233-576-9, 2003.
[73] WORDNET, Available at: http://wordnet.princeton.edu/.
[74] W.R. Foshay, K.H. Silber, and M. Stelnicki, "Writing training materials that work", Jossey-Bass/Pfeiffer, 2003.
[75] XML Schema, Available at: http://www.w3.org/TR/xmlschema-0/.