簡易檢索 / 詳目顯示

研究生: 楊季樺
Yang, Chi-Hua
論文名稱: 利用衛星測高與遙測影像監測內陸水體:以台灣曾文水庫為例
Monitoring Inland Water Bodies Using Satellite Altimetry and Remote Sensing Imageries: A Case Study on Tsengwen Reservoir in Taiwan
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: Landsat影像衛星測高表面積水位蓄水量變化
外文關鍵詞: Landsat imagery, Satellite altimetry, Water level, Water Volume, MNDWI
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球氣候變化增加了野火、極端高溫/降水與乾旱等極端氣候事件發生的機率,而
    乾旱將導致民生和工業用水缺乏,連帶引發衛生危機、疾病及經濟蕭條,因此,良好
    的水資源管理策略對世界各國的經濟發展和人口增長具有重要意義。在分析和管理水
    庫、河流和湖泊等地表水資源時,水位與蓄水量是兩個重要的指標,然而,偏遠地區
    或低度開發國家缺乏現地測量,難以進行即時且連續的水資源監測。衛星測高具有全
    天候運行的優勢,能夠持續監測人類無法到達的內陸水體之水位,而遙測衛星影像可
    成功地用於推求水域表面積。因此,本研究旨在整合Landsat 影像和衛星測高觀測量,
    以台灣西南部曾文水庫為例,求得2003 至2020 年間長期表面積、水位與蓄水量變
    化。首先,藉由計算Landsat 影像之改良常態差異水體指標 (Modified Normalized
    Difference Water Index, MNDWI) 來提取水體邊界與表面積;為提升受雲遮蔽之遙測
    衛星影像使用率,本研究利用二階多項式迴歸模型建構出部份水域表面積 (受雲遮蔽
    影像) 與完整水域表面積 (無雲影像) 之相關性。接著使用衛星測高觀測的水位,建
    立表面積與水位之間的線性迴歸模型,可將表面積時間序列轉換為水位時間序列。最
    後,結合水域表面積和水位可計算水庫蓄水量。為評估推求之水位及蓄水量精度,我
    們使用曾文水庫現地監測儀器記錄的水位和蓄水量來驗證。研究結果顯示Landsat 影
    像的資料使用率從23%提高至43%,而表面積與水位迴歸模型的?2為0.97-0.99,水
    位估值與現地水位的差值之均方根誤差 (root-mean-square error, RMSE) 約為2.947-
    5.557 m,相關係數為0.93-0.99。此外,蓄水量估值與現地蓄水量之間的相關係數為
    0.88-0.97,皆顯示本研究方法求得的估值與現地資料的一致性。綜上所述,整合多元
    的遙感技術可有效地進行水資源監測工作,該技術也為長期的水位和蓄水量提供一種
    新的監測方法,並可協助地方政府制定適當的水資源管理計劃。

    Global climate change increases the frequency and intensity of extreme climate events, and it leads to water shortage which affects our lives including environment, ecosystem and human society. Hence, a sound management strategy for water resources is important for all countries worldwide. When analyzing and managing surface water resources, water area (WA), water level (WL) and water volume (WV) are three important indicators. However, remote regions or undeveloped countries have less water information due to the lack of insitu water records. Remote sensing has the ability to continuously monitor inland water bodies in human-inaccessible areas. In this research, we aimed to integrate Landsat satellite imagery and satellite altimetry to derive long-term WA, WL and WV of Tsengwen Reservoir located in the southwestern Taiwan from 2003-2020. First, water boundary and WA are extracted from Landsat satellite imagery by Modified Normalized Difference Water Index (MNDWI). Because data availability of optical imagery will be affected by cloud cover effects, a regression model for establishing the relationship between a portion of WA and entire WA was adopted to estimate entire WA of cloud-covered image. Then, combining the WA and WL provided by satellite altimetry to build a regression model which is used to transfer WA time series to WL time series. Finally, WV was computed from the extracted WA and WL. The local water gauge data was used to validate and evaluate the estimated WL and WV. The results showed that the data availability of Landsat imagery can be increased from 23% to 43%. Moreover, the statistics demonstrated the good agreement between the retrieved WL/WV measurements and the local water gauge data with the correlation coefficients of 0.88-0.99. To sum up, the results indicated that the integration of multi-source remote sensing technologies can effectively provide a novel method for long-term WA, WL and WV monitoring works to assist local governments with appropriate plan of water resources management.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 論文架構 11 第二章 基本介紹及觀測原理 12 2-1 衛星測高 12 2-1-1 發展概況 12 2-1-2 觀測原理 13 2-1-3 相關改正介紹 15 2-1-4 Envisat 測高衛星介紹 18 2-2 Landsat 任務 21 2-2-1 發展概況 21 2-2-2 Landsat 衛星介紹 22 2-2-3 相關改正介紹 26 2-3 水位計 28 第三章 研究區域、資料與方法 29 3-1 研究區域 29 3-2 研究資料 32 3-2-1 Envisat 測高資料 32 3-2-2 Landsat 衛星影像資料 36 3-2-3 水位計資料 39 3-3 研究架構流程圖 40 3-4 計算表面積 45 3-4-1 水體指標及閾值 45 3-4-2 Landsat 8 雲偵測演算法 50 3-5 計算表面積、水位與蓄水量估值 55 3-5-1 Landsat 8 表面積迴歸模型 55 3-5-2 表面積與水位之迴歸模型 64 3-5-3 蓄水量變化 70 第四章 研究成果與分析 72 4-1 使用之參數與統計指標 72 4-1-1 參數 72 4-1-2 統計指標 74 4-2 表面積 76 4-2-1 Landsat 8 76 4-2-2 Landsat 5 84 4-3 水位 86 4-3-1 Landsat 5 86 4-3-2 Landsat 8 87 4-4 蓄水量變化 90 4-4-1 Landsat 5 90 4-4-2 Landsat 8 91 4-5 研究成果與相關分析 93 4-5-1 研究成果 93 4-5-2 相關分析 96 第五章 結論與建議 102 5-1 結論 102 5-2 建議 105 參考文獻 106

    楊亭宜 (2014)。利用波形重定改善近岸與內陸小水體之 Envisat 測高資料 (碩士論
    文)。取自國立成功大學電子學位論文系統。
    陳永明、林松錦、黃柏誠、黃麗蓉、王安翔、林李耀、李清勝 (2015)。2005 年0612
    豪雨個案初步分析。國家災害防救科技中心。取自http://photino.cwb.gov.tw/rdcweb/lib/cd/cd01conf/dissertation/2005-1/006.pdf
    Abatzoglou, J. T., & Ficklin, D. L. (2017). Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship. Water Resources Research, 53(9), 7630-7643. doi:10.1002/2017WR020843
    Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., . . . & Winder, M. (2009). Lakes as sentinels of climate change. Limnology and oceanography, 54(6part2), 2283-2297. doi:10.4319/lo.2009.54.6_part_2.2283
    Alsdorf, D. E., Rodríguez, E., & Lettenmaier, D. P. (2007). Measuring surface water from space. Reviews of Geophysics, 45(2), RG2002. doi:10.1029/2006RG000197
    Baumann, P. R. (2010). REMOTE SENSING: LANDSAT PROGRAM. Retrieved from http://employees.oneonta.edu/baumanpr/geosat2/rs%20landsat/rs-landsat.htm
    Baup, F., Frappart, F., & Maubant, J. (2014). Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrology and Earth System Sciences, 18(5), 2007-2020. doi:10.5194/hess-18-2007-2014
    Berry, P. A. M., Garlick, J. D., Freeman, J. A., & Mathers, E. L. (2005). Global inland water monitoring from multi-mission altimetry. Geophysical Research Letters, 32(16). doi:10.1029/2005GL022814
    Birkett, C. M. (1995). The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. Journal of Geophysical Research: Oceans, 100(C12), 25179-25204. doi:10.1029/95JC02125
    Birkett, C. M., & Beckley, B. (2010). Investigating the Performance of the Jason-2/OSTM Radar Altimeter over Lakes and Reservoirs. Marine Geodesy, 33(sup1), 204-238. doi:10.1080/01490419.2010.488983
    Bogardi, J. J., Dudgeon, D., Lawford, R., Flinkerbusch, E., Meyn, A., Pahl-Wostl, C., . . . & Vörösmarty, C. (2012). Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Current opinion in environmental sustainability, 4(1), 35-43. doi:10.1016/j.cosust.2011.12.002
    Brown, G. (1977). The average impulse response of a rough surface and its applications. IEEE transactions on antennas and propagation, 25(1), 67-74. doi:10.1109/TAP.1977.1141536
    Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L., & Callahan, P. S. (2001). Chapter 1 Satellite Altimetry. In Satellite Altimetry and Earth Sciences - A Handbook of Techniques and Applications (International Geophysics) (Vol. 69, pp. 1-ii): Elsevier.
    Crétaux, J.-F., & Birkett, C. (2006). Lake studies from satellite radar altimetry. Comptes Rendus Geoscience, 338(14-15), 1098-1112. doi:10.1016/j.crte.2006.08.002
    Deng, X., & Featherstone, W. E. (2006). A coastal retracking system for satellite radar altimeter waveforms: Application to ERS‐2 around Australia. Journal of Geophysical Research: Oceans, 111(C6). doi:10.1029/2005JC003039
    Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., . . . & Middelburg, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and oceanography, 51(5), 2388-2397. doi:10.4319/lo.2006.51.5.2388
    Duan, Z., & Bastiaanssen, W. G. M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403-416. doi:10.1016/j.rse.2013.03.010
    Elwood, D. E. Y. (2018). Instrumentation. In P. Bobrowsky & B. Marker (Eds.), Encyclopedia of Engineering Geology (pp. 1-17). Cham: Springer International Publishing.
    ESA. (2009). ENVISAT RA-2/MWR Level 2 User Manual.
    Fang, Y., Cheng, W., Zhang, Y., Wang, N., Zhao, S., Zhou, C., . . . & Bao, A. (2016). Changes in inland lakes on the Tibetan Plateau over the past 40 years. Journal of Geographical Sciences, 26(4), 415-438. doi:10.1007/s11442-016-1277-0
    FDES. (2013). Manual on the Basic Set of Environment Statistics of the FDES 2013.
    FDES. (2017). Framework for the Development of Environment Statistics (FDES 2013).
    Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35. doi:10.1016/j.rse.2013.08.029
    Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., . . . & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. doi:10.1016/j.rse.2017.03.026
    Forootan, E., Kusche, J., Loth, I., Schuh, W.-D., Eicker, A., Awange, J., . . . & Shum, C. K. (2014). Multivariate Prediction of Total Water Storage Changes Over West Africa from Multi-Satellite Data. Surveys in Geophysics, 35(4), 913-940. doi:10.1007/s10712-014-9292-0
    Giles, K. A., Laxon, S. W., & Worby, A. P. (2008). Antarctic sea ice elevation from satellite radar altimetry. Geophysical Research Letters, 35(3). doi:10.1029/2007GL031572
    Hwang, C. (1997). Analysis of some systematic errors affecting altimeter-derived sea surface gradient with application to geoid determination over Taiwan. Journal of Geodesy, 71(2), 113-130. doi:10.1007/s001900050080
    Hwang, C., Kao, E.-C., & Parsons, B. (1998). Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophysical Journal International, 134(2), 449-459. doi:10.1111/j.1365-246X.1998.tb07139.x
    Iestyn Woolway, R., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388-403. doi:10.1038/s43017-020-0067-5
    Irish, R. R. (2000). Landsat 7 automatic cloud cover assessment. Paper presented at the Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI.
    Khandu, Forootan, E., Schumacher, M., Awange, J. L., & Müller Schmied, H. (2016). Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin. Water
    Resources Research, 52(3), 2240-2258. doi:10.1002/2015WR018113
    Koblinsky, C. J., Clarke, R. T., Brenner, A. C., & Frey, H. (1993). Measurement of River Level Variations With Satellite Altimetry (0043-1397). Retrieved from Water Resources Research:
    Kuo, C.-Y., & Kao, H.-C. (2011). Retracked Jason-2 Altimetry over Small Water Bodies: Case Study of Bajhang River, Taiwan. Marine Geodesy, 34(3-4), 382-392. doi:10.1080/01490419.2011.584830
    LAXON, S. (1994). Sea ice altimeter processing scheme at the EODC. International Journal of Remote Sensing, 15(4), 915-924. doi:10.1080/01431169408954124
    Li, X., Long, D., Huang, Q., Han, P., Zhao, F., & Wada, Y. (2019). High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 11(4), 1603-1627. doi:10.5194/essd-11-1603-2019
    Liu, G., Schwartz, F. W., Tseng, K.-H., & Shum, C. K. (2015). Discharge and water-depth estimates for ungauged rivers: Combining hydrologic, hydraulic, and inverse modeling with stage and water-area measurements from satellites. Water Resources Research, 51(8), 6017-6035. doi:10.1002/2015WR016971
    Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., . . . & Oki, T. (2017a). Water scarcity assessments in the past, present, and future. Earth's future, 5(6), 545-559. doi:10.1002/2016EF000518
    Liu, K.-T. (2017b). Integration of Multi-satellite Measurements to Quantify the Temporal Changes of Mekong River (Master's thesis). Retrieved from https://etd.lib.nctu.edu.tw/cgibin/gs32/ncugsweb.cgi?o=dncucdr&s=id=%22GC103322086%22.#
    Liu, K.-T., Tseng, K.-H., Shum, C. K., Liu, C.-Y., Kuo, C.-Y., Liu, G., . . . & Shang, K. (2016). Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries. Remote Sensing, 8(5). doi:10.3390/rs8050367
    Loveland, T. R., & Dwyer, J. L. (2012). Landsat: Building a strong future. Remote Sensing of Environment, 122, 22-29. doi:10.1016/j.rse.2011.09.022
    McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714
    Medina, C., Gomez-Enri, J., Alonso, J. J., & Villares, P. (2010). Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products. Journal of Hydrology, 382(1-4), 34-48. doi:10.1016/j.jhydrol.2009.12.016
    Moholdt, G., Nuth, C., Hagen, J. O., & Kohler, J. (2010). Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment, 114(11), 2756-2767. doi:10.1016/j.rse.2010.06.008
    Morris, C. S., & Gill, S. K. (1994). Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. Journal of Geophysical Research: Oceans, 99(C12), 24527-24539. doi:10.1029/94JC01642
    Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal, 24(3), 69-71.
    Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models. Chicago: Irwin.
    Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66. doi:10.1109/TSMC.1979.4310076
    Pan, F., Xi, X., & Wang, C. (2020). A Comparative Study of Water Indices and Image Classification Algorithms for Mapping Inland Surface Water Bodies Using Landsat Imagery. Remote Sensing, 12(10). doi:10.3390/rs12101611
    Pickens, A. H., Hansen, M. C., Hancher, M., Stehman, S. V., Tyukavina, A., Potapov, P., . . . & Sherani, Z. (2020). Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sensing of Environment, 243. doi:10.1016/j.rse.2020.111792
    Pietroniro, A., Prowse, T., & Peters, D. L. (1999). Hydrologic assessment of an inland freshwater delta using multi‐temporal satellite remote sensing. Hydrological Processes, 13(16), 2483-2498. doi:10.1002/(SICI)1099-1085(199911)13:16<2483::AIDHYP934>3.0.CO;2-9
    Qiu, S., Zhu, Z., & Woodcock, C. E. (2020). Cirrus clouds that adversely affect Landsat 8 images: What are they and how to detect them? Remote Sensing of Environment, 246. doi:10.1016/j.rse.2020.111884
    Shen, Y., Wang, Y., & Lv, H. (2015). Thin cloud removal for Landsat 8 OLI data using independent component analysis. Paper presented at the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
    Skakun, S., Vermote, E. F., Roger, J.-C., Justice, C. O., & Masek, J. G. (2019). Validation of the LaSRC Cloud Detection Algorithm for Landsat 8 Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2439-2446. doi:10.1109/JSTARS.2019.2894553
    Tseng, K.-H., Chang, C.-P., Shum, C. K., Kuo, C.-Y., Liu, K.-T., Shang, K., . . . & Sun, J. (2016a). Quantifying Freshwater Mass Balance in the Central Tibetan Plateau by Integrating Satellite Remote Sensing, Altimetry, and Gravimetry. Remote Sensing, 8(6). doi:10.3390/rs8060441
    Tseng, K.-H., Shum, C. K., Kim, J.-W., Wang, X., Zhu, K., & Cheng, X. (2016b). Integrating Landsat Imageries and Digital Elevation Models to Infer Water Level Change in Hoover Dam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1696-1709. doi:10.1109/JSTARS.2015.2500599
    Tseng, K.-H., Shum, C. K., Yi, Y., Emery, W. J., Kuo, C.-Y., Lee, H., & Wang, H. (2013).
    The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry Waveforms. IEEE transactions on geoscience and remote sensing, 52(2), 991-1001. doi:10.1109/TGRS.2013.2246572
    USGS. (2019). Landsat 8 (L8) Data Users Handbook.
    USGS. (2020). Landsat 8 Collection 1 (C1) Land Surface Reflectance Code (LaSRC) Product Guide.
    Van Den Hoek, J., Getirana, A., Jung, H. C., Okeowo, M. A., & Lee, H. (2019). Monitoring Reservoir Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern Brazil. Remote Sensing, 11(7), 827. doi:10.3390/rs11070827
    Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high‐resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. doi:10.1002/2014GL060641
    Wang, X., Xie, S., Zhang, X., Chen, C., Guo, H., Du, J., & Duan, Z. (2018). A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 68, 73-91. doi:10.1016/j.jag.2018.01.018
    Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., . . . & Wynne, R. (2008). Free Access to Landsat Imagery. Science, 320(5879), 1011a. doi:10.1126/science.320.5879.1011a
    Xiang, J., Li, H., Zhao, J., Cai, X., & Li, P. (2021). Inland water level measurement from spaceborne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. Journal of Hydrology, 597, 126312. doi:10.1016/j.jhydrol.2021.126312
    Xu, H. (2007). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. doi:10.1080/01431160600589179
    Yao, F., Wang, J., Wang, C., & Crétaux, J.-F. (2019). Constructing long-term highfrequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment, 232. doi:10.1016/j.rse.2019.111210
    Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to Landsat preprocessing. Ecology, 98(4), 920-932. doi:10.1002/ecy.1730
    Zhou, Y., Jin, S., Tenzer, R., & Feng, J. (2016). Water storage variations in the Poyang Lake Basin estimated from GRACE and satellite altimetry. Geodesy and Geodynamics, 7(2), 108-116. doi:10.1016/j.geog.2016.04.003
    Zhu, Z., Qiu, S., He, B., & Deng, C. (2018). Cloud and Cloud Shadow Detection for Landsat Images: The Fundamental Basis for Analyzing Landsat Time Series. In Remote Sensing Time Series Image Processing (pp. 3-23).
    Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269-277. doi:10.1016/j.rse.2014.12.014
    Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83-94. doi:10.1016/j.rse.2011.10.028
    Zhu, Z., Wulder, M. A., Roy, D. P., Woodcock, C. E., Hansen, M. C., Radeloff, V. C., . . . & Scambos, T. A. (2019). Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 224, 382-385. doi:10.1016/j.rse.2019.02.016
    Zlotnicki, V., Fu, L. L., & Patzert, W. (1989). Seasonal variability in global sea level observed with Geosat altimetry. Journal of Geophysical Research: Oceans, 94(C12), 17959-17969. doi:10.1029/JC094iC12p17959

    無法下載圖示 校內:2026-08-23公開
    校外:2026-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE