簡易檢索 / 詳目顯示

研究生: 施曜民
Shi, Yao-Min
論文名稱: 不鏽鋼316L粉末流模擬與DED製程改善
Simulation and Improvement of the SS 316L Powder Flow in Direct Energy Deposition Process
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 雷射披覆矩形薄牆金屬工件表面平整度披覆高度田口方法
外文關鍵詞: Laser cladding, Thin-rectangle-wall metal parts, surface evenness, cladding height, Taguchi method
相關次數: 點閱:103下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造(Additive Manufacturing ,AM)採用離散材料(液體、粉末、絲、片、板、塊等)逐層累加原理製造實體零件的技術。是一種自下而上材料累加的製造技術,也稱為加法製造,有別於傳統加工方法利用設備進行減法的方式,如利用車床加工、研磨等製造出所需的產品,積層製造特色在於達成「設計個人化、浪費極小化」,具備客製化、節能、迅速、彈性及高價性能比等優點,現正逐漸用於一些產品的少量直接製造,特別是一些高價值應用,如生醫零件或航太零件都可以採用這種技術。
    雖然加法製造的積層成型技術有很多的優點,但仍然有一些瓶頸需要去克服,製程參數對披覆品質的影響需要進行研究,為了設計出一穩健製程,除了需具備材料方面以及熱傳知識,也必須對相關文獻進行探討,以利在實驗設計中能定義出較適當的品質目標,同時篩選出重要的實驗參數,讓研究流程更有效率且結果更有價值。
    明確設定目標與瞭解實驗設備後,列表實驗中可調動參數,排除影響較小實驗因子,並先整理出實驗參數調動適當範圍,將使用田口方法的實驗規劃分析各因子對披覆品質的影響,為增進實驗效率初步先未考慮交互作用,對實驗結果進行分析披覆形成缺陷原因,並進一步變動製程嘗試解決,進行最佳化設置以提高披覆高度與平整度。除了宏觀的表面品質分析外,也將對微結構進行探討,分析製程參數如何對其進行影響,本文針對直接製造矩形薄壁零件進行分析,找出關鍵因子參數對品質的影響,並證實研究前後差異。

    AM (Additive manufacturing) is a novel technique to manufacture physical parts layer by layer using discrete materials such as liquid, powder, silk, film, plate, block, etc. Different from the traditional processing methods using equipment to subtract parts, for example, the use of lathe processing, grinding, etc. The purpose of AM is to achieve "personalized design, waste minimization". The process has advantage of customization, energy saving, rapid, flexible and high-performance performance. Currently, medical parts or aerospace parts can use this technology for a small number of direct manufacturing products.

    Although the additive manufacturing technology has many advantages, there are still some bottlenecks need to overcome. The influence of process parameters on the quality of cladding needs to be studied. In order to design a robust process, the materials and heat transfer knowledge are essential. The related literature must be searched to define appropriate performance index. Meanwhile picking out important experiment parameters, so that the research process more efficient and the results more valuable.

    To simplify the complexity of laser cladding experiment design, we listed total adjustable parameters table, excluding the less impact of experiment factors, and first sorted out the appropriate setting range of parameters. The relationships between parameters and performance indices of cladding would be analyzed by using Taguchi methods. It was possible to find the significant of cladding with limited numbers of experiments by applying orthogonal arrays. In this paper, the direct manufacture of rectangular thin-walled parts were analyzed to find out the key factor parameters on the surface evenness and cladding height of the impact and confirmed the difference before and after.

    摘要 I Extended Abstract II 誌謝 X 目錄 XII 表目錄 XV 圖目錄 XVI 第一章、緒論 1 1-1 前言[3][1][2][3] 1 1-2. 研究動機與目的 3 1-3. 研究方法 5 1-4. 文獻回顧 7 1-5. 文章架構 14 第二章、相關技術與理論背景 16 2-1 雷射相關技術 16 2-1-1 雷射器構成[1] 16 2-1-2 碟片雷射[1][2][4] 16 2-1-3 雷射披覆原理[3][5] 18 2-2 分析軟體與數值理論 20 2-2-1 軟體介紹[11][12][13] 20 2-2-2 質量守恆方程式 21 2-2-3 動量守恆方程式 22 2-2-4 能量守恆方程式 23 2-3 離散相數值理論 24 2-3-1 工程假設[17] 24 2-3-2 粒子運動方程式[18] 25 2-3-3 粒徑分布曲線[19] 26 2-4 田口實驗設計法[14] 30 2-4-1 實驗設計法 30 2-4-2 品質特性 31 2-4-3 品質損失函數 32 2-4-4 實驗因子的定義與選擇 34 2-4-5 變異分析 35 第三章、同軸送粉噴嘴氣固流場模擬研究 36 3-1 研究方法 36 3-2 定義材料性質 37 3-3幾何建立 37 3-4 選取元素與網格切割[15] 39 3-5 邊界條件[20] 43 3-5-1 入口邊界條件 43 3-5-2 出口邊界條件 44 3-5-3 對稱邊界條件 44 3-5-4 壁面邊界條件 45 3-5-5 粒子射入條件 45 3-6 模擬結果 46 3-6-1 速度場分析 46 3-6-2 粒子濃度場分析 47 第四章、雷射披覆製程研究 49 4-1 製程問題描述 49 4-2 實驗設備 50 4-3 一次一因子實驗 52 4-3-1 因子選擇[21][23][24] 52 4-3-2 實驗結果 54 4-4 田口實驗設計 58 4-4-1 品質特性與理想機能 58 4-4-2 控制因子與變動水準 59 4-4-3 因子效應 60 4-4-4 結果與驗證實驗 64 第五章、進階製程參數研究 67 5-1 能量密度對披覆製程研究 67 5-2 每層能量遞減率對披覆製程研究 69 5-3 田口交互作用實驗設計 71 5-3-1 品質特性與理想機能 71 5-3-2 控制因子與變動水準 72 5-3-3 因子效應 74 第六章、結論與未來工作 78 6-1 結論 78 6-2 未來工作 80 參考文獻 81 索引 84

    [1]陳蒼杰, 圖解雷射應用與原理, 世茂出版有限公司, 台灣 (2001).
    [2]劉國基、張百齊, Nd-YAG 雷射的加工應用, 遠東學報, 台灣 (2001).
    [3]楊隆昌, 雷射發展的趨勢與應用, 中工高雄會刊, 台灣 (2014).
    [4]何煦輝, 碟片激光器及其在工業中的應用, 激光與光電子學進展, 中國(2009).
    [5]G. P. Dinda, A. K. Dasgupta, and J. Mazumder, "Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability," Materials Science and Engineering: A, Vol. 509, No. 1, pp. 98-104 (2009).
    [6]Jehnming Lin, "Numerical simulation of the focused powder streams in coaxial laser cladding," Journal of Materials Processing Technology, Vol. 105, No. 1, pp. 17-23 (2000).
    [7]Yanmin Li, Haiou Yang, Xin Lin, Jianguo Li, and Yaohe Zhou, "The influences of processing parameters on forming characterizations during laser rapid forming," Materials Science and Engineering: A, Vol. 360, No. 1, pp. 18-25 (2003).
    [8]Gangxian Zhu, Dichen Li, Gang Pi, and Yiping Tang, "The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition," Optics & Laser Technology, Vol. 44, No .2, pp. 349-356 (2012).
    [9]Kai Zhang, Shijie Wang, Weijun Liu, and Xiaofeng Shang, "Characterization of stainless steel parts by laser metal deposition shaping," Materials & Design, Vol. 55, pp. 104-119 (2014).
    [10]J. Dutta Majumdar, A. Pinkerton, Z.Liu, I. Manna, and L. Li, "Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel," Applied Surface Science, Vol. 247, No. 1, pp. 320-327 (2005).
    [11]ANSYS Workbench User’s Guide, Release 15.0, ANSYS, Inc. (2013).
    [12]ANSYS FLUENT User’s Guide, Release 15.0, ANSYS, Inc. (2013).
    [13]ANSYS FLUENT Tutorial Guide, Release 15.0, ANSYS, Inc. (2013).
    [14]Huei-Huang, Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau Lin Book Co. Ltd., Taipei, Taiwan (2011).
    [15]Huei-Huang, Lee, Finite Element Simulations with ANSYS Workbench 15, 全華圖書股份有限公司, 台灣 (2014).
    [16]Hussam El Cheikha, Bruno Couranta, Samuel Branchua, Xiaowei Huangc, Jean-Yves Hascoëtb, and Ronald Guilléna, "Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures," Optics and Lasers in Engineering, Vol. 50, No. 12, pp. 1779-1784 (2012).
    [17]Zekovic, Srdja, Rajeev Dwivedi, and Radovan Kovacevic, "Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition," International Journal of Machine Tools and Manufacture, Vol. 47, No. 1, pp. 112-123 (2007).
    [18]Irina Kovaleva, Oleg Kovalev, Alexander Zaitsev, Igor Smurov, Pascal Aubry, Rezak Mezari, Thierry Malot, and Kevin Verdier, "Numerical Simulation and Experimental Investigation of Three Dimensional Gas-Jet Transportation of Powder Particles in Direct Material Deposition," 32nd International Congress on Applications of Lasers & Electro-Optics (ICALEO’2013), pp. 268-275 (2013).
    [19]I. Tabernero, A. Lamikiz, E. Ukar, L.N. López de Lacalle, C. Angulo, and G. Urbikain, "Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding," Journal of Materials Processing Technology, Vol. 210, No. 15, pp. 2125-2134 (2010).
    [20]S.Y. Wen, Y.C. Shin, J.Y. Murthy, and P.E. Sojka, "Modeling of coaxial powder flow for the laser direct deposition process," International Journal of Heat and Mass Transfer, Vol. 52, No. 25, pp. 5867-5877 (2009).
    [21]S. Sun, Y. Durandet, and M. Brandt, "Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel," Surface and Coatings Technology, Vol. 194 , No. 2, pp. 225-231 (2005).
    [22]Yongjun Huang, "Characterization of dilution action in laser-induction hybrid cladding," Optics & Laser Technology, Vol. 43, No. 5, pp. 965-973 (2011).
    [23]Rasheedat M. Mahamood, Esther T. Akinlabi, Mukul Shukla, and Sisa Pityana, "Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite," Materials & Design, Vol. 50, pp. 656-666 (2013).
    [24]A. B. Spierings, M. Schneider, and R. Eggenberger, "Comparison of density measurement techniques for additive manufactured metallic parts," Rapid Prototyping Journal, Vol. 17, No. 5, pp. 380-386 (2011).
    [25]J. Mazumder, A. Schifferer, and J. Choi, "Direct materials deposition: designed macro and microstructure," Materials Research Innovations, Vol. 3, No. 3, pp.118-131 (1999).
    [26]廖建智, 雷射切割加工頭之旋流氣體流道設計與流場模擬分析, 國立成功大學工程科學系碩士論文, 台南, 台灣 (2016).
    [27]Subrata Mondal, C. P. Paul, L. M. Kukreja, Asish Bandyopadhyay, and Pradip Kumar Pal, "Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface," The International Journal of Advanced Manufacturing Technology, pp. 1-6 (2013).

    下載圖示 校內:2021-10-29公開
    校外:2021-10-30公開
    QR CODE