研究生: |
張如君 Chang, Ru-Chun |
---|---|
論文名稱: |
硫化銀奈米粒子/氧化鋅奈米線複合結構之製備及其應用於太陽能電池之研究 Formation of Ag2S Nanoparticle/ZnO Nanowire Composites For Use In Solar Cells |
指導教授: |
吳季珍
Wu, Jih- Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 氧化鋅 、太陽能電池 、硫化銀 、聲化學方法 |
外文關鍵詞: | ZnO, Ag2S, sonochemical method, solar cell |
相關次數: | 點閱:55 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電化學法分析分別於ITO基板預鍍Au、Pt金屬層及ITO基板對脈衝式電流電化學法成長奈米柱之影響。通以定電流密度-2mAcm-2成長氧化鋅時,相較於其他兩種基板,預鍍Au之ITO基板上有較小之充電電流且初始成核階段之電壓較形成氫氣者正,故預鍍Au之ITO基板較利於氧化鋅之成長。進一步於聲化學法(Sonochemical method)輔助下成長硫化銀奈米粒子/氧化鋅奈米線複合材料,透過X光繞射及穿透式電子顯微鏡分析,可知硫化銀是屬於多晶之Monoclinic結構,而氧化鋅為單晶Wurtzite結構,具有(002)晶面的優勢向位。此複合結構之形成機制為氧化鋅在硝酸銀及硫脲溶液中被置換為硫化銀。且由光學分析結果得知,硫化銀的尺寸愈大其起始吸收波長愈長。將此複合結構進一步應用為液態太陽能電池之光電極,以白金為對電極搭配多硫電解液,最高之太陽能電池效能為0.49%。另外,應用於固態太陽能電池之光電極時,配合硫氰化銅(CuSCN)為電洞傳導層,最高之太陽能電池效能為0.03%。
The influences of the Au- and Pt-precoated layer on pulsed current electrodeposition of ZnO nanorods on ITO substrates have been investigated using electroanalyting methods. Compared to Pt-precoated and bare ITO substrates, the Au-precoated ITO substrate has less charging current and more positive potential than that of H2 formation in the nucleation stage at a current density of -2mAcm-2. High-density ZnO nanorods are therefore deposited on the Au-precoated ITO substrate. The Ag2S nanoparticles (NPs) have been successfully prepared on ZnO nanowires (NWs) using sonochemical method to form Ag2S NP/ZnO NW composites. XRD and TEM characterizations show that Ag2S NPs are monoclinic structure and ZnO NWs sustain single crystalline wurtzite structure after the sonochemical growth of Ag2S NPs. The proposed mechanism for Ag2S NP formaiotn is ion exchanges of ZnO NWs. Optical analyses show that the absorption wavelength of Ag2S NP is getting longer as the size increases. The solar cells are fabricated using Ag2S NP/ZnO NW composites as the photoanodes. A photoelectrochemical-cell efficiency of 0.49% is achieved using the photoanode of Ag2S NP/ZnO NW composite. Moreover, a solid solar cell composed of the Ag2S NP/ZnO NW composite with a hole conducting layer of CuSCN is also fabricated. An efficiency of 0.03% is obtained.
[01] 吳茂昆 展望新科技 小奈米,大未來。
http://www.nchu.edu.tw/~material/nano/nanoinformation55htm
[02] M. Grätzel, “Powering of planet”, Nature, 403, 363 (2000)
[03] B. O’Regan and M Grätzel, “A low-cost, high-efficiency solar cell based
on dye-sensitized colloidal TiO2 film”, Nature, 353, 737 (1991)
[04] 溫慧怡,高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究,成功
大學化工系碩士論文,民國92年。
[05] Z. W. Pan, Z. R. Dai, and Z. L. Wang, ”Nanobelts of semiconducting
Oxides”, Science, 291, 1947 (2001)
[06] Y. C. Kong, D. P. Yu, B Zhang, W. Fang, and S. Q. Feng, ”Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach”, Appl. Phys. Lett., 78, 407 (2001)
[07] P. D. Yang, H. Q. Yan and S Mao , ”Controlled growth of ZnO
nanowires and their optical properties”, Adv. Funct. Mater., 12, 323 (2002)
[08] J. J. Wu and S. C. Liu, ”Low-temperature growth of well-aligned ZnO
nanorods by chemical vapor deposition”, Adv. Mater, 14, 215 (2002)
[09] J. Y. Lao, J. Y.Huang, D. Z. Wang and Z. F. Ren, ”ZnO nanobrides and
Nanonails”, Nano Lett., 3, 235 (2003)
[10] Y. Sun and G. M. Fuge, ”Growth of aligned ZnO nanorod arrays by
catalyst-free pulesd laser deposition methods”, Chem. Phys. Lett., 396, 21 (2004)
[11] K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West and D. Coleman., ”Room-temperature lasing observed from ZnO nanoclums grown by aqueous solution deposition”, Adv. Mater., 14, 1221 (2002)
[12] S. Yamabi and H. Imai, ”Growth conditions for wurtzite zinc oxide
films in aqueous solutions”, J. Mater. Chem., 12, 3773 (2002)
[13] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO
from aqueous solutions”, Adv. Mater., 15, 464 (2003)
[14] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,成功
大學化工系碩士論文,民國92年。
[15] 古鎮豪,以化學浴沉積法成長氧化鋅奈米線-奈米粒複合薄膜與其於
染料敏化太陽能電池之應用,成功大學化工系博士論文,民國96年。
[16] S. R. Barman, N. Shanthi, A. K. Shukla, and D. D. Sarma, “Order-disorder and electronic transitions in Ag2S single crystals studied by photoemission spectroscopy”, Phys. Rev. B, 53, 3746 (1996)
[17] D. Wang, C. Hao, W. Zheng, Q. Peng, T. Wang, Z. Liao, D. Yu and Y. Li, “Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors”, Adv. Mater., 20, 2628 (2008)
[18] C. Liang, K. Terabe, T. Hasegawa and M. Aono, ”Resistance switching of an individaual Ag2S/Ag nanowire heterostructure”, Nanotechnology, 18, 485202 (2007)
[19] H. M. Pathan, P. V. Salunkhe, B. R. Sankapal and C. D. Lokhande, ”Photoelectrochemical investigation of Ag2S thin films deposition by SILAR method”, Mater. Chem. Phys., 72, 105 (2001)
[20] www.ctci.org.tw/public/Attachment/562714495371.doc,太陽能電池的介紹。
[21] http://www.kson.com.tw/chinese/study_23-8.htm,薄膜太陽能電池。
[22] A. Solbrand, H. Lindstrom and H. Rensmo, ”Electron transport in the nanostructure TiO2-electrolyte system studied with time-resolved
photocurrents”, J. Phys. Chem. B, 101, 2514 (1997)
[23] N. Kopidakis, E. A. Schiff and N. G. Park, “Ambipolar diffusion of
photocarries in electrolyte-filled, nanoporous TiO2”, J. Phys. Chem. B, 104, 3930 (2000)
[24] S. Nakade, W. Kubo and Y. Saito, ”Influence of measurement conditions on electron diffusion in nanoporous TiO2 films:Effects of bias light and dye absorption”, J. Phys. Chem. B, 107, 14244 (2003)
[25] L. Forro, O Chauvet, D. Emin and L. Zuppiroli, ”High-mobility N-type charge-carries in large single-crystals of anatase”, J. Appl. Phys., 75, 633 (1994)
[26] E. Hendry, M. Koeberg, B. O’Regan and M. Bonn, ”Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy”, Nano Lett., 6, 755 (2006)
[27] J. B. Baxter and C. A. Schmuttenmaer, ”Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy”, J. Phys. Chem. B, 110, 25229 (2006)
[28] N. A. Anderson, X. Ai, and T. Lian., ”Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin film”, Coord. Chem. Rev., 248, 1231 (2004)
[29] R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa and M. Tachiya, ”Kinectics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductor”, Coord. Chem. Rev. 248, 1195 (2004)
[30] A. Furube, M. Murai and S. Watanade, ”Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin film:Comparison with SnO2, ZnO, and TiO2 films”, J. Photochem. Photobiol. A-Chem., 182, 273 (2006)
[31] J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik and T. Lian, ”Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films”, J. Phys. Chem. B, 103, 3110 (1999)
[32] J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh, and T. Lian, ”Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films”, J. Phys. Chem. B, 105, 4545 (2001)
[33] N. A. Anderson, X. Ai, and T. Lian, ”Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films”, J. Phys. Chem. B, 107, 14414 (2003)
[34] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata , H. Arakawa and M. Tachiya, “Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation”, J. Phys. Chem. B, 107, 2570 (2003)
[35] R. Katoh, A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa and M. Tachiya, ”Efficiencies of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons”, J. Phys. Chem. B, 106, 12957 (2002)
[36] K. Nomura, N. Shibata and M. Maeda, “Preparation of Zinc oxide thin films by pulsed current electrolysis”, J. Electrochem. Soc., 149, F76. (2002)
[37] N. S. Qu , D. Zhu , K. C. Chan and W. N. Lei, ”Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density”, Surf. Coat. Technol., 168, 123 (2003)
[38] S. S. Kim, Y. C. Nah and Y. Y. Noh, “Electrodeposited Pt for cost- efficient and flexible dye-sensitized solar cells”, Electrochim. Acta, 51, 3814 (2006)
[39] D. Lincot and S. Peulon, ”Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films”, Adv. Mater., 8, 166 (1996)
[40] M. Izaki and T. Omi, “Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction”, J. Electrochem. Soc., 144, 1949 (1997)
[41] M. Lai and D. J. Riley, “Templated electrosynthesis of zinc oxide
nanorods”, Chem. Mater., 18, 2233 (2006)
[42] N. Mukherjee, P. Bhattacharyya, M. Banerjee, A. Mondal, R. T. T. Gettens, P. K . Ghosh and H. Saha, ”Galvanic deposition of nanocrystalline ZnO thin films from a ZnO–Zn(OH)2 mixed phase precursor on p-Si substrate”, Nanotechnology, 17, 2665 (2006)
[43] L. Xu, Y. Guo, Q. Liao, J. Zhang and D. Xu, ”Morphological control of ZnO nanostructures by electrodeposition”, J. Phys. Chem. B, 109, 13519 (2005)
[44] B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li and W. Cai, “Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties”, J. Phys. Chem. C, 111, 2470 (2007)
[45] L. Xu, Q. Liao, J. Zhang, X. Ai and D. Xu, “Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods ”, J. Phys. Chem. C, 111, 4549 (2007)
[46] B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao and D. Yu, ”A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties“, Nanotechnology, 16, 2567 (2005)
[47] 吳浩青、李永舫,電化學動力學。科技圖書,2001。
[48] J. J. Wu and S. C. Liu, ”Catalyst-free growth and characterization of ZnO nanorods“, J. Phys. Chem. B, 106, 9546 (2002)
[49] J. J. Wu and S. C. Liu, “Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)”, J. Mater. Chem., 12, 3125 (2002)
[50] K. Hiruma, T. Katsuyama, K. Ogawa, M.“Quantum size microcrystals grown using organometallic vapor phase epitaxy”, Appl. Phys. Lett., 59, 431, (1991)
[51] Y. Wu and P. Yang, ”Germanium nanowire growth via simple vapor transport”, Chem. Mater., 12, 605 (2000)
[52] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers and B. Gates, ”One- dimensional nanostructures: synthesis, characterization, and applications”, Adv. Mater., 15, 353 (2003)
[53] H. R. Nicewarner-Pena, R. G. Freeman and B. D. Reiss, ”Submicrometer metallic Barcodes”, Science, 294 (2001)
[54] L. Vayssieres, K. Keis, S.E. Lindquist and and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, J.
Phys. Chem. B, 105, 3350 (2001)
[55] L. Vayssieres, K. Keis, S. E. Lindquist, ” Three-dimensional array
of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395 (2001)
[56] L. Vayssieres, ”Growth of arrayed nanorods and nanowires of ZnO from Aqueous Solutions”, Adv. Mater., 15, 464 (2003)
[57] L. E. Greene, M. L., J. Goldberger,F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, ”Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew. Chem. Int. Ed, 42, 3031 (2003)
[58] Y. Tak and K. Yong, ”Controlled growth of well-aligned ZnO Nanorod Array Using a Novel Solution Method”, J. Phys. Chem. B, 109, 19263 (2005)
[59] X.S. Peng and G. W. Meng, “Eletrochemical fabrication of ordered Ag2S nanowire arrays”, Mater. Res. Bull., 37, 1369 (2002)
[60] Z. Zhuang, Q. Peng,X. Wang, and Yadong Li, “Tetrahedral Colloidal Crystals of Ag2S Nanocrystals”, Angew. Chem. Int. Ed., 46, 8174 (2007)
[61] D. Wang, T. Xie Q. Peng, and Y. Li, ”Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assemble and construction of mesoporous structures”, J. Am. Chem. Soc., 130, 4016 (2008)
[62] Y. F. Zhu, D. H. Fan and W. Z. Shen, “A general chemical conversion route to synthesize various ZnO-based core/shell structures“, J. Phys. Chem. C, 112, 10402 (2008)
[63] C. D. Lokhande and K. M. Gadave, ”A simple chemical method for conversion of CdS into Ag2S and CdSe into Ag2Se”, Mater. Chem. Phys., 36, 119 (1993)
[64] L. Dloczik and A. R. Koenenkamp, ”Nanostructured metal sulfide surfaces by ion exchange processes”, J Solid State Eletrochem, 8, 142 (2004)
[65] T. J. Mason, Sonochemistry the Uses of Ultrasound in Chemistry,
Royal Social of Chemisty (1990)
[66] L. D. Rozenberg, High Intensity Ultrasonic Fields, Plenum Press,
New York (1971)
[67] V. G. Pol,A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: A sonochemical approach”, Chem. Mater., 15, 1111 (2003)
[68] Tao Gao, Qiuhong Li, and Taihong Wang, ”Sonochemical sythesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites”, Chem. Mater., 17, 887 (2005)
[69] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, ”Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy”, J. Am. Chem. Soc., 127, 3456 (2005)
[70] P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, ”High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chem. Commun., 20, 2972 (2002)
[71] J. H. Yun, S. Nakade, D. Y. Kim and S. Yanagida, ”Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides”, J. Phys. Chem. B, 110, 3215 (2006)
[72] A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, “Optical to electrical energy conversion characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells”, J. Am. Chem. Soc., 98, 6855 (1976)
[73] P. M. Lessner, F. R. McLarnon, J. Winnick, and E. J. Cairns, ”The dependence of aqueous sulfur-polysulfide redox potential on electrolyte composition and temperature”, J. Electrochem. Soc., 140, 1847 (1993)
[74] A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, ”Study of n-tye semiconducting cadmium chalcogenide-based photoelectrochemical Cells Employing Polychalcogenide Electrolytes”, J. Am. Chem. Soc., 99, 2839 (1977)
[75] B. O'Regan, F. Lenzmann, R. Muis, and J. Wienke, ”A solid-state dye-sensitized solar cell fabricated with pressure-treated P25−TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics”, Chem. Mater., 14, 5023 (2002)
[76] Y. Itzhaik, O. Niitsoo, M. Page and G. Hodes, ”Sb2S3-sensitized nanoporous TiO2 solar cells”, J. Phys. Chem. C, 113, 4254 (2009)
[77] C. Levy-Clement, R. Tena-Zaera, and M. A. Ryan, ”CdSe-sensitized p-CuSCN/nanowire n-ZnO heterotuctions”, Adv. Mater., 17, 1512 (2005)
[78] R. O’Hayre, M. Nanu, J. Schoonman and A. Goossens, ”The influence of TiO2 particle size in TiO2/CuInS2 nanocomposite solar cells” Adv. Funct. Mater., 16, 1566 (2006)
[79] M. Sharon,The Photoelectrochemistry of Semiconductor/Electrolyte Cells, (2007)
[80] 尚澤光電,http://www.lumenoptimum.com/Products01.htm
[81] 材料分析,第六章,掃描式電子顯微鏡分析,中國材料科學學會,汪建民主編。
[82] 材料分析,第二章,X光繞射分析,中國材料科學學會,汪建民主編。
[83] 材料分析,第九章,高解析度穿透式電子顯微鏡分析,中國材料科學學會,汪建民主編。
[84] http://www.newport.com
[85] 林志誠,以脈衝式電流電化學沉積法成長氧化鋅奈米柱的研究, 成功大學化工系碩士論文,民國96年。
[86] Kashchiev D (2000) Nucleation basic theory with applications. Butterworth-Heinemann, Oxford.
[87] A. I. Kryukov, S. Ya. Kuehmii, and V. D. Pokhodenko, “Energetics of electron processes in semiconductor photocatalytic systems”, Theor. Exp. Chem., 36, 63 (2000)
[88] L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, “High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells”, Appl. Phys. Lett., 91, 023116 (2007)
[89] S. M. Yang, C.H. Huang, J. Z., Z. S. Wang and L. Jiang, “High photostability and quantum yield of nanoporous TiO2 thin film”, J. Mater. Chem., 12, 1459 (2002)
[90] M. M. E-Nahass, A. A. M. Farag, E. M. Ibrahim and S. Abd-El-Rahman,
“Structural, optical and electrical properties of thermally evaporated Ag2S thin films”, Vacuum, 72, 453 (2004)
[91] Y. L. Lee and Y. S. Lo, “Highly efficient quantum-dot-sensitized solar cell Based on co-sensitization of CdS/CdSe”, Adv. Funct. Mater., 19, 604 (2009)