| 研究生: |
李思維 Lee, Sih-Wei |
|---|---|
| 論文名稱: |
沙庫巴曲,一種新型的腦啡肽酶抑製劑,對腦下垂體細胞與海馬迴神經元上的離子電流之調節作用的有趣證據 Intriguing Evidence for Regulatory Actions of Sacubitril, a Novel Neprilysin Inhibitor, on Ionic Currents in Pituitary Cells and Hippocampal Neurons |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | Sacubitril 、M型鉀離子電流 、鈉離子電流 、動作電位 、垂體細胞 、海馬迴細胞 |
| 外文關鍵詞: | Sacubitril, M-type K+ current, Na+ current, action potential, pituitary cell, hippocampal neuron |
| 相關次數: | 點閱:64 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景/目的: Sacubitril (SAC) 被認為是一種腦啡肽酶 (neprilysin) 的抑制劑,是一種與valsartan (VAL) 合併使用的新型抗高血壓藥物,而 VAL 則是已知的血管加壓素 II 受體的阻滯劑。 然而,目前還不清楚這兩種藥劑可能在多大程度上直接擾亂膜離子電流的振幅和動力學。 在這項研究中,我們試圖確定 SAC 及其相關化合物對腦下垂體細胞和海馬迴神經元的離子電流的影響。 研究方法:以膜片鉗 (patch clamp) 之全細胞(whole-cell) 或細胞貼附 (cell-attach) 的配置下進行記錄。 結果:向腦下垂體細胞株 GH3 添加 SAC會以濃度依賴性的方式降低M型鉀離子電流 (IK(M)) 的電流幅度,其半抑制濃度 (IC50) 值約為 9.8 μM。 在添加 SAC 後, M型鉀離子電流的激活曲線偏移到更為去極化的電位,但電流的門控電荷量 (gating charge) 沒有變化。 該藥物與 metformin或 sitagliptin 合併使用可以協同性抑制M型鉀離子電流,聯合指數 (CI) 小於 1.0,該指數由 Chou-Talalay 圖形進行計算。 濃度達 30 μM 的 SAC 能些微抑制 GH3 細胞中的延遲整流器型鉀離子電流;然而,它的存在對大型電導的鈣離子激活的鉀離子通道的活性改變極小。 而 SAC 也能略微的抑制電壓門控型的鈉離子電流 (INa),進一步添加 VAL 或 metofluthrin 則可增加電流的幅度,同時降低電流的失活率。 在電流鉗 (current-clamp) 的記錄模式下, SAC 能有效增加自發性動作電位 (APs) 的觸發頻率,隨後添加 flupirtine 則能逆轉其對動作電位頻率加速的效果。 在海馬迴神經元細胞株mHippoE-14的實驗中,也觀察到 SAC 有抑制 M型鉀離子電流幅度的能力。 結論:除去對腦啡肽酶抑制的效果外,由 SAC 所誘導的M型鉀離子電流擾動可能是直接作用的,並且是因其對其他體內神經元、神經內分泌細胞或內分泌細胞之廣泛藥理作用的影響所致。
Background/Aims: Sacubitril (SAC) recognized to be a neprilysin inhibitor is a novel antihypertensive drug used in combination with valsartan (VAL) that is thought to be a blocker of angiotensin II receptors. However, it is largely unclear to what extent these two agents might directly perturb the amplitude and kinetics of membrane ionic currents. In this study, we sought to determine the effects of SAC and its related compounds on ionic currents in pituitary cells and hippocampal neurons. Methods: Patch-clamp recordings were performed under whole-cell, cell-attached or inside-out configuration. Results: Addition of SAC to GH3 cells decreased the amplitude of M-type K+ current (IK(M)) in a concentration-dependent manner with an IC50 value of 9.8 μM. The activation curve of IK(M) after addition of SAC was shifted to depolarized potential with no change in the gating charge of the current. This drug in combination with either metformin or sitagliptin acts synergistically to suppress IK(M) with the combination index less than 1.0, which was calculated from Chou-Talalay plot. SAC at a concentration of 30 μM slightly suppressed delayed-rectifier K+ current in GH3 cells; however, minimal change in the activity of large-conductance Ca2+-activated K+ channels was demonstrated in its presence. SAC slightly suppressed voltage-gated Na+ current (INa) and further addition of VAL or metofluthrin enhanced current amplitude together with decreased rate of current inactivation. Under current-clamp recordings, this compound was effective at increasing firing frequency of spontaneous actions potentials (APs) and subsequent addition of flupirtine reversed its increase of AP frequency. In mHippoE-14 hippocampal neurons, the ability of SAC to inhibit IK(M) amplitude was also observed. Conclusion: Apart from neprilysin inhibition, SAC-induced perturbation of IK(M) is direct and may reasonably be responsible for its widely pharmacological actions on neurons, or neuroendocrine or endocrine cells arising in vivo.
Hubers, S. A., Brown, N. J. (2016). Combined angiotensin receptor antagonism and neprilysin inhibition. Ciruclation, 133(11), 1115-1124.
Prenner, S. B., Shah, S. J., Yancy, C. W. (2016). Role of angiotensin receptor-neprilysin inhibition in heart failure. Curr Atheroscler Rep, 18(8), 48.
Chrysant, S. G., Chrysant, G. S. (2018). Sacubitril/valsartan: a cardiovascular drug with pluipotential actions. Cardiovasc Diagn Ther, 8(4), 543-548.
Kim, H. K., Youm, J. B., Lee, S. R., Lim, S. E., Lee, S. Y., Ko, T. H., Long, le, T., Nilius, B., Won, du, N., Noh, J. H., Ko, K. S., Rhee, B. D., Kim, N., Han, J. (2012). The angiotensin receptor blocker and PPAR-γ agonist, telmisartan, delays inactivation of voltage-gated sodium channel in rat heart: novel mechanism of drug action. Pflugers Arch, 464(6), 631-643.
Chang, W. T., Wu, S. N. (2018). Activation of voltage-gated sodium current and inhibition of erg-mediated potassium current caused by telmisartan, an antagonist of angiotensin II type-1 receptor, in HL-1 atrial cardiomyocytes. Clin Exp Pharmacol Physiol, 45(8), 797-807.
Chang, T. T., Yang, C. J., Lee, Y. C., Wu, S. N. (2018). Stimulatory action of telmisartan, an antagonist of angiotensin II receptor, on voltage-gated Na+ current: experimental and theoretical studies. Chin J Physiol, 61(1), 1-13.
So, E. C., Wu, S. N., Lo, Y. C., Su, K. (2018). Differential regulation of tefluthrin and telmisartan on the gating charges of INa activation and inactivation as well as on resurgent and persistent INa in a pituitary cell line (GH3). Toxicol Lett, 285, 104-112.
Ogawa, T., Kiryu-Seo, S., Tanaka, M., Konishi, H., Iwata, N., Saido, T., Watanabe, Y., Kiyama, H. (2005). Altered expression of neprilysin family members in the pituitary gland of sleep-disturbed rats, an animal model of severe fatigue. J Neurochem, 95(4), 1156-66.
Brown, D. A., Passmore, G. M. (2009). Neural KCNQ (Kv7) channels. Br J Pharmacol, 156(8), 1185-95
Maljevic, S., Wuttke, T.V., Seebohm, G., Lerche, H. (2010). Kv7 channelopathies. Pflugers Arch, 460(2), 277-88.
Zhou, J. J., Gao, Y., Kosten, T. A., Zhao, Z., Li, D. P. (2017). Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis. Neuropharmacology, 114, 67-76.
Huang, C. W., Hung, T. Y., Liao, Y. K., Hsu, M. C., Wu, S. N. (2013). Underlying mechanism of regulatory actions of diclofenac, a nonsteroidal anti-inflammatory agent, on neuronal potassium channels and firing: an experimental and theoretical study. J Physiol Pharmacol, 64(3), 269-280.
Hsu, H. T., Tseng, Y. T., Lo, Y. C., Wu, S. N. (2014). Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit. BMC Neurosci, 15, 135.
Lin, M. W., Yang, S. R., Huang, M. H., Wu, S. N. (2004). Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-κB activation, on Ca2+-activated K+ current in pituitary GH3 cells. J Biol Chem, 279(26), 26885-26892.
So, E. C., Wang, Y., Yang, L.Q., So, K. H., Lo, Y. C., Wu, S. N. (2018). Multiple regulatory actions of 2-guanidine-4-methylquinazoline (GMQ), an agonist of acid-sensing ion channel type 3, on ionic currents in pituitary GH3 cells and in olfactory sensory (Rolf B1.T) neurons. Biochem Pharmacol, 151, 79-88.
Chen, T. S., Lai, M. C., Hung, T. Y., Lin, K. M., Huang, C. W., Wu, S. N. (2018). Pioglitazone, a PPAR-γ activator, stimulates BKCa but suppresses IK(M) in hippocampal neurons. Front Pharmacol, 9, 977, doi: 10.3389/fphar.2018.00977.
Tsai, K. L., Chang, H. F., Wu, S. N. (2013). The inhibition of inwardly rectifying K+ channels by memantine in macrophages and microglial cells. Cell Physiol Biochem, 31(6), 938-951.
Wu, S. N., Chern, J. H., Shen, S., Chen, H. H., Hsu, Y. T., Lee, C. C., Chan, M. H., Lai, M. C., Shie, F. S. (2017). Stimulatory actions of a novel thiourea derivative on large-conductance, calcium-activated potassium channels. J Cell Physiol, 232(12), 3409-3421.
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay Method. Cancer Res, 70(2), 440-446.
Sankaranarayanan, S., Simasko, S. M. (1996). Characterization of an M-like current modulated by thyrotropin-releasing hormone in normal rat lactotrophs. J Neurosci, 16(5), 1668-1678.
Selyanko, A. A., Hadley, J. K., Wood, I. C., Abogadie, F. C., Delmas, P., Buckley, N. J., London, B., Brown, D. A. (1999). Two types of K+ channel subunit, erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci, 19, 7742-7756.
Huang, C. W., Huang, C. C., Lin, M. W., Tsai, J. J., Wu, S. N. (2008). The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int J Neuropsychopharmacol, 11, 597-610.
Wu, S. N., Hsu, M. C., Liao, Y. K., Wu, F. T., Jong, Y. J., Lo, Y. C. (2012). Evidence for inhibitory effects of flupirtine, a centrally acting analgesic, on delayed rectifier K+ currents in motor neuron-like cells. Evid Based Complement Alternat Med, 2012, 148403. doi: 10.1155/2012/148403.
Chen, P. C., Ruan, J. S., Wu, S. N. (2018). Evidence of decreased activity in intermediate-conductance calcium-activated potassium channels during retinoic acid-induced differentiation in motor neuron-like NSC-34 cells. Cell Physiol Biochem, 48, 2374-2388.
Esser, N., Barrow, B. M., Choung, E., Shen, N. J., Zraika, S. (2018). Neprilysin inhibition in mouse islets enhances insulin secretion in a GLP-1 receptor dependent manner. Islets, 10(5), 175-180.
Jin, K., Ruan, L., Pu, J., Zhong, A., Wang, F., Tan, S., Huang, H., Mu, J., Yang, G. (2018). Metformin suppresses growth and adrenocorticotrophic hormone secretion in mouse pituitary corticotroph tumor AtT20 cells. Mol Cell Endocrinol, 478, 53-61. doi: 10.1016/j.mce.2018.07.007.
Wu, A. Z., Yin, D., Xu, Z., Everett, T. H., Chen, Z., Wu, S. N. (2016). Ventricular arrhythmias evoked by tefluthrin, a pyrethroid, at longer pacing cycle lengths in mice hearts. Circulation, 134, A15870.
Wu, S. N., Liu, S. I., Huang, M. H. (2004). Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells. Endocrinology, 145(3), 1175-84.
Patel, N., Gluck, J. (2017). Is Entresto good for the brain? World J Cardiol, 9(7), 594-599.
Schoenfeld, H. A., West, T., Verghese, P. B., Holubasch, M., Shenoy, N., Kagan, D., Buono, C., Zhou, W., De, Cristofaro, M., Douville, J., Goodrich, G. G., Mansfield, K., Saravanan, C., Cumin, F., Webb, R. L., Bateman, R. J. (2017). The effect of angiotensin receptor neprilysin inhibitor, sacubitril/valsartan, on central nervous system amyloid-β concentrations and clearance in the cynomolgus monkey. Toxicol Appl Pharmacol, 323, 53-65.
Gu, J., Noe, A., Chandra, P., Al-Fayoumi, S., Ligueros-Saylan, M., Sarangapani, R., Maahs, S., Ksander, G., Rigel, D. F., Jeng, A. Y., Lin, T. H., Zheng, W., Dole, W. P. (2010). Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol, 50(4), 401-414.
Wang, J. S., Gu, X., Zhang, Q., Zhang, X., Li, Y., Yao, Y., Yu, B., Zhang, Y. (2018). Angiotensin II suppresses rev-erbα expression in THP-1 macrophages via the Ang II type 1 receptor/liver X receptor α pathway. Cell Physiol Biochem, 46(1), 303-313.
Sarrias, A., Bayes-Genis, A. (2018). Is sacubitril/valsartan (also) an antiarrhythmic drug? Circulation, 138(6), 551-553.