| 研究生: |
尤鎮芫 Yu, Chen-yuan |
|---|---|
| 論文名稱: |
結合混金多孔氧化矽材奈米微粒與拉曼光譜法於細菌指紋圖譜分析之研究 A novel SERS actives Gold Nanoparticles@Mesoporous Silicas for Bacteria Fingerprint Discrimination |
| 指導教授: |
張憲彰
Chang, Hsien-chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 金黃色葡萄球菌 、表面增顯拉曼散射 、多孔性奈米微粒 |
| 外文關鍵詞: | Surface-enhanced Raman Scattering, Gold Nanoparticles@Mesoporous Silicas, Staphylococcus aureus |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係透過結合多孔氧化矽材以製作表面無保護劑的奈米金屬複合微粒,並用增顯拉曼光譜來擷取微生物指紋圖譜,期能供來自於臨床與環境以及食品之含細菌鑑定時的快速評估。我們調控不同金含量(0 %、2 %、4 %、6 %、8 %和13 %),以探討拉曼檢測時的訊號增顯效果。由金黃色葡萄球菌之圖譜顯示,當奈米多孔矽材中的金含量由0%提高至6%時,目標微生物在1523 cm-1 的特徵峰訊號強度可由200 增加至2000 counts,約提高10 倍。然當含金量增加到13%時,訊號強度則更大幅提高至9000 counts,此時訊號強度非但增為45倍,而且在1000~1200 cm-1 和1500~1600 cm-1 出現更多細微的特徵波峰,可能會有利於細菌之間的辨識。其次,我們也將該多孔性奈米材料壓錠作成的平板基材,以供將試樣點滴其上,即能進行如上所述的拉曼量測。調控壓錠之壓力分別設為140、280 和420 kg/cm2,其含金量分別為2 %、4 %、6 %、8 %和13 %以及雷射光斑大小各為10、30 及45 μm,並控制金黃色葡萄球菌的濃度為109 CFU/ml,進行拉曼光譜偵測。結果顯示以壓力420 kg/cm2、金含量13 %和光斑大小10 μm時,具有較佳之表面拉曼增顯效果。但在此法量測細菌光譜之際,常會因樣本乾濕程度不同而導致金黃色葡萄球菌訊號呈現差異,於是我們探討了將基材維持在一定溼度下進行偵測,而獲得與懸浮式奈米微粒相似之拉曼訊號,且約可增顯50 倍左右。故本偵測方法對於低細菌濃度除具高度敏感性之外,並可獲得待測生物樣品的拉曼光譜,因此藉由實驗相關物質的拉曼圖譜檢測資料庫之建立,將可作為相關比對分析之基本指參。
In this study, the gold nanoparticles@mesoporous silicas without protecting agents on metal surface, which are used as surface-enhanced Raman scattering (SERS) matrix for Staphylococcus aureus (S. aureus) characterization under Raman spectroscopic analysis by modulating different Au content (0%, 2%, 4%, 6%, 8% and 13%). The characterized
peak at 1523 cm-1 can be enhanced from 200 to 2000 counts in intensity when Au content increased to 6 %. The enhancing factor is about 10 folds.However, the signal can be substantially raised to 9000 counts and other characterized peaks appear when Au content increase to 13%. The enhancing factor is up to 45 folds. Besides, we control different pressure(140, 280, 420 kg/cm2), Au content (2%, 4%, 6%, 8% and 13%), LASER spot sizes (10, 30, 45 μm) of the gold nanoparticles@mesoporous
silica-made SERS substrates for Raman detection of the S. aureus in concentration of 109 CFU/ml. From the results, we could obtain much better Raman signal when the conditions were modulated at 420 kg/cm2, Au content 13 %, and spot size 10 μm. Due to the humidity of suspensive
nanoparticles- and substrates-modes have different Raman signals for S. aureus. Therefore, we maintained fixed humidity under Raman detection that obtained the similar signals with suspensive nanoparticle-mode, and
the enhanced factor could reach to 50 times. In addition to improve the sensitivity at low concentration of bacteria, this method may also provide us Raman spectra and information of biological samples.
[1] M. Harz, P. Ro¨sch, K. D. Peschke, O. Ronneberger, H. Burkhardt, J. Popp,‘Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions’, Analyst, 130(2005)1543.
[2] K. Ramser, W. Wenseleers, S. Dewilde, S. V. Doorslaer, L. Moens, D. Hanstorp,‘Micro-resonance Raman study of optically trapped Escherichia coli cells
overexpressing human neuroglobin’, Journal of Biomedical Optics, 12(2007)5.
[3] E. Consuelo Lo´ pez-Dı´ez, Catherine L. Winder, Lorna Ashton, Felicity Currie, and Royston Goodacre, ‘Monitoring the Mode of Action of Antibiotics Using
Raman Spectroscopy: Investigating Subinhibitory Effects of Amikacin on Pseudomonas aeruginosa’ Analytical Chemistry, 77(2005)2901.
[4] 蔡文城,實用臨床微生物診斷學,九州圖書,p.360 (2000)。
[5] C. H. Chen, H. C. Ding, T. C. Chang, ‘Rapid Identification of Bacillus cereus Based on the Detection of a 28.5-Kilodalton Cell Surface Antigen’, Journal of Food Protection, 64(2001)348.
[6] C.V. Raman and K. S. Krishnan, Nature 121(1928)50.
[7] 郭奕玲、沈慧君,科學的榮耀-諾貝爾物理學獎百年回顧,科技圖書,(2002)191。
[8] A. Schawlow and C. H. Townes, Physical Review. 122(1958)1940.
[9] M. Delhaye and M. Migeon, Comptes Rendus De L Academie Bulgare DesSciences 262(1966)1513.
[10] M. Delhaye and P. Dhamelincourt, IVth Int. Conf. Raman Spectrosc., Brunswick, ME, USA (1974).
[11] G. J. Rosasco, Etz, E. S. and W. A. Cassatt, IVth Int. Conf. Raman Spectrosc.,
Brunswick, ME, USA (1974).
[12] Z. C. Feng, A. A. Allerman, P. A. Barnes and S. Perkowitz,” Raman scattering of InGaAs/InP grown by uniform radial flow epitaxy”, Applied Physics Letters, 60(1992)1848.
[13] J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao, Y. H. Liu and E. A. Beam,” Phonon mode study of near-lattice-matched InxGa1–xAs using micro-Raman spectroscopy”, Applied Physics Letters, 60(1992)1927.
[14] G. M. Lucovsky, H. Brodsky, M. F. Chen, R. J. Chicotka and A. T. Ward,”72 Long-Wavelength Optical Phonons in Ga1-xInxP”, Physical Review B,
4(1971)1945.
[15] Y. Koji and T. Katoda, ” Raman spectra and electric resistance of thermally treated In/GaAs structures”, Journal of Applied Physics, 70(1991)7036.
[16] D. P. Bour, J. R. Shealy, A. Ksendzov and F. Pollak,” Optical investigation of organometallic vapor phase epitaxially grown AlxGa1–xP”, Journal of Applied Physics, 64(1988)6456.
[17] G. Keresztury, ‘Raman Spectroscopy: Theory’, in “Handbook of Vibrational Spectroscopy”, John Wiley & Sons, Chichester, 1(2001)71.
[18] A. T. Tu, Raman Spectroscopy in Biology Principles and Applications, John Wiley & Sons, Inc. (2005)110.
[19] 李冠卿,物理雙週刊,第五卷,第四期 (1983) 185.
[20] J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, Academic Press, San Diego, (1994)71-92.
[21] R. L. McCreery, Raman Spectroscopy for chemical analysis, New York: Wiley Interscience, (2000).
[22] E. Smith & G. Dent, ‘Surface-Enhanced Raman Scattering and Surface-Enhanced Resonance Raman Scattering’, in “Modern Raman Spectroscopy: A Practical
Approach”, John Wiley & Sons, (2005)114.
[23] M. Moskovits, ‘Surface-Enhanced Raman Spectroscopy: a Brief Perspective’, in “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, (2006)1.
[24] G. C. Schatz, M. A. Young, R. P. van Duyne, ‘Electromagnetic Mechanism of SERS’, in “Surface-Enhanced Raman Scattering: Physics and Applications”,
Springer, (2006)19.
[25] M. I. Stockman, ‘Electromagnetic Theory of SERS’, in “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, (2006)19.
[26] M. Kerker, D. S. Wang, H. Chew, Surface Enhanced Raman Scattering (SERS) by Molecules Adsorbed at Spherical Particles, Applied Optics, 19(1980)4159.
[27] H. X. Xu, M. Kall, ‘Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory’, in “Surface-Enhanced Raman Scattering:
Physics and Applications”, Springer, (2006)87.
[28] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-Enhanced Raman Scattering, Journal of Physics: Condensed Matter, 4(1992)1143.
[29] A. Campion, P. Kambhampati, Surface-Enhanced Raman Scattering, Chemical Society Reviews, 27(1998)241.
[30] http://www.nanoedu.ndhu.edu.tw/92forum/120601.pdf
[31] H. M. Yamaki, K. Kusakabe and S. Morooka, Journal of Membrane Science, 85(1993)167.
[32] R. K. Iler, The Chemistry of Silica , John Wiley, New York, (1979).
[33] O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey. Chemistry of Materials., 6(1994)1176.
[34] H. P. Lin and C. Y. Mou, Accounts of Chemical Research, 35(2002)927.
[35] http://www.lsbu.ac.uk/water/hygel.html
[36] B. Kim, S. L. Tripp, A. Wei, Journal of the American Chemical Society, 123(2001)7955.
[37] E. Fort, C. Ricolleau, J. Sau-Pueyo, NanoLetters, 3(2003)65.
[38] D. Eck, C. A. Helm, N. J. Wagner, K. A. Vaynberg, Langmuir, 17(2001)957.
[39] O. Seitz, M. M. Chehimi, E. Cabet-Deliry, S. Truong, N. Felidj, C. Perruchot, S.J. Greaves, J.F. Watts, Colloids and Surfaces A, 218(2003)225.
[40] Y. K. Min, T. Yamamoto, E. Kohda, ‘1064 nm near-infrared multichannel Raman spectroscopy of fresh human lung tissues’ , Journal of Raman Spectroscopy,36(2005)73.
[41] J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang and Y. Q. Li,‘Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy’, Journal of Raman Spectroscopy, 36(2005)257.
[42] W. Xie , Y. Ye , A. Shen , L. Zhou, Z. Lou, X. Wang, J. Hu, ‘ Evaluation of DNA-targeted anti-cancer drugs by Raman spectroscopy’, Vibrational Spectroscopy, 47(2008)119.
[43] M. Fernanda Escoriza, M. Vanbriesen, S. Stewart, J. Maier, ’Studying Bacterial Metabolic States Using Raman Spectroscopy’, Applied Spectroscopy, 60(2006)971.