簡易檢索 / 詳目顯示

研究生: 高禎志
Kao, Chen-Chih
論文名稱: 探討非熱微電漿對黑色素瘤細胞及纖維母細胞共培養系統之影響
Study of the Non-Thermal Micro Plasma on the Co-culture of Melanoma Cells and Fibroblasts
指導教授: 廖峻德
Liao, Jiunn-Der
共同指導教授: 劉浩志
Liu, Bernard HaoChih
王士豪
Wang, Shyh-Hau
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 非熱微電漿抑制癌細胞生長反應性氧物種共培養皮膚黑色素瘤纖維母細胞
外文關鍵詞: non-thermal plasma, reactive oxygen species, co-culture system, melanoma cell, fibroblasts
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿是將部分氣體離子化的物質第四態,近年來許多研究已顯示其在抑制癌細胞生長之重要性,以往非熱微電漿(NTP)主要是透過直接照射於癌細胞或腫瘤來進行抑制,不過由於NTP 照射的面積及深度有限,因此對於皮膚表層尚未發生轉移的腫瘤抑制較有效。而目前關於NTP 抑制癌細胞的文獻大部分針對單培養系統來進行,本研究為了以更貼近人體腫瘤微環境去探討NTP 對癌細胞之研究,因此採用皮膚癌細胞中惡性度且致死率最高的黑色素癌細胞B16-F10 及其周圍的纖維母細胞L929 進行共培養並探討NTP 對此共培養系統之影響。首先透過電漿溫度測量及OES 光譜分析決定本實驗電漿機台He 流量參數為1.6 standard L/min (SLM),ROS 濃度測量分單培養及共培養系統比較,單培養B16F-10 吸收ROS 效率比單培養L929 高3-10%;而在共培養系統中,NTP 似乎會促進細胞分泌更多的ROS 擴散至細胞外來維持環境的ROS 平衡,因此測量到的ROS 濃度有提升的趨勢。第二階段將B16-F10 及L929 分別以單培養及共培養後,觀察兩培養系統中的生長差異,發現共培養系統中的B16-F10 生長速率比單培養來得快,顯示出共培養環境中的生長因子可能促進B16-F10 的生長;而180 s 電漿處理雖然可抑制共培養B16-F10 的存活率至38%,不過也造成共培養L929 僅剩54%的存活率。最後為了提升低劑量電漿之效果,比較NTP 進行單次及二次處理後的抑制癌細胞生長之效果,結果顯示在相同總電漿處理時間下,二次處理相對單次處理造成癌細胞凋亡的比例提升了20 %左右,顯示出低劑量電漿確實可透過處理多次之方法來提升其效果。透過本研究的共培養實驗可以更清楚影響癌細胞生長的可能因子,未來有機會可以將NTP 的應用延伸至影響細胞交互作用間的細胞激素,進而達到更有效抑制癌細胞之方法。

    In this study, the co-culture system of melanoma cell B16-F10 and fibroblasts L929 was used to investigate the selective effect of non-thermal micro plasma (NTP). At first, to find the best helium flow rate for experiment, the plasma temperature and generated species intensity were measured under different He flow rate, and 1.6 SLM of He was proper for the further experiment. The cell viability assay was separated to mono- and co-culture system to see the cell-cell interaction in co-culture system after NTP treatment. The results showed that co-cultured B16-F10 was more resistant to NTP compared with mono-cultured B16-F10, and it could be due to the cytokines release in the co-culture system. In general, NTP selectively induce B16-F10 rather than L929 in both culture systems for low dose plasma (30-90 s); however, both cells in co-culture system encountered large toxicity for high dose plasma (180 s), leading to around 50-60 % of cell death. Therefore, the double low dose treatment was replaced with single high dose treatment to keep higher living normal cell rate and inhibit cancer cell growth as usual. The results showed that in the same total treatment time, double plasma treatment enhanced around 20 % of B16-F10 apoptosis compared with single treatment, and leaving around 80-90 % of L929 alive.

    摘要................................Ⅰ SUMMARY.............................Ⅱ 誌謝................................XII 表目錄............................... XVI 圖目錄................................ XVII 第一章 緒論..................................... 1 1.1 前言..................................... 1 1.2 研究動機................................... 4 1.3 研究目的................................... 4 第二章 文獻回顧與理論基礎............................ 5 2.1 造成細胞凋亡的電漿影響因子...................... 5 2.1.1 ROS 及RNS ............................... 5 2.1.2 UV 光.................................. 6 2.1.3 培養基pH 改變............................. 7 2.2 電漿應用於in vitro 與 in vivo 之研究................... 8 2.2.1 不同電漿系統及參數應用於in vitro 之研究............. 8 2.2.2 電漿對co-culture system 之影響................... 12 2.2.3 電漿應用於in vivo 之研究...................... 13 2.3 細胞外ROS 持續作用時間........................ 14 2.4 分次治療(fractionation)對於癌症研究的重要性.............. 17 2.4.1 分次治療應用於放射性療程之理論.................. 17 2.4.2 類似分次治療之電漿應用...................... 18 2.5 腫瘤微環境對癌細胞影響之研究.................... 19 2.5.1 活化的纖維母細胞促進了癌細胞的生長............... 19 2.5.2 HGF 影響癌細胞生長......................... 21 2.6 黑色素瘤各分期及對應療程........................ 21 2.7 Summary ................................. 23 第三章 材料與方法 ................................. 24 3.1 實驗設計................................. 24 3.2 實驗材料................................. 25 3.2.1 細胞培養............................... 25 3.2.2 共培養系統............................... 25 3.2.3 非熱微電漿系統........................... 26 3.3 分析儀器及方法............................. 27 3.3.1 Fiber optic thermometer......................... 27 3.3.2 光學放射性光譜(Optical emission spectrum).............. 27 3.3.3 MTS assay ............................... 27 3.3.4 Extracellular ROS 測量......................... 28 3.3.5 Intracellular ROS 測量........................ 29 3.3.6 CFSE labeling.............................. 29 3.3.7 流式細胞儀區別共培養系統中的兩細胞.............. 30 3.3.8 細胞凋亡分析............................ 31 第四章 電漿參數及產生物種分析 ........................ 33 4.1 電漿溫度................................. 33 4.2 Optical emission spectrum of He micro-plasma.............. 34 4.2.1 Wide scanning of He plasma jet ..................... 34 4.2.2 Semi-quantitation of species generated by plasma ............ 35 4.3 ROS level in the cell-containing medium in the mono- and co-culture system under He plasma exposure ............................. 36 4.3.1 ROS level in the mono-culture system ................. 36 4.3.2 ROS level in the co-culture system .................. 38 4.3.3 不同工作氣體之ROS 濃度比較.................... 39 4.4 Summary ................................. 41 第五章 電漿對於共培養及單培養細胞之比較................... 42 5.1 電漿對單培養系統細胞生長之探討................... 42 5.2 電漿對共培養系統細胞生長之探討................... 43 5.2.1 共培養系統受電漿處理後之細胞生長曲線及細胞增生變化.... 44 5.2.2 共培養系統受電漿處理後之細胞凋亡分析............. 46 5.3 兩種培養系統對細胞影響之比較.................... 48 5.3.1 兩種培養系統不受電漿影響之細胞成長狀況............. 48 5.3.2 兩種培養系統受電漿影響後的細胞存活率比較........... 49 5.4 單次電漿處理 vs 二次電漿處理 對共培養細胞之影響........ 50 5.4.1 單次電漿處理 vs 二次電漿處理對共培養細胞處理之螢光圖... 51 5.4.2 單次電漿處理 vs 二次電漿處理對共培養細胞存活率之影響... 52 5.4.3 單次電漿處理 vs 二次電漿處理對共培養系統之細胞凋亡分析... 54 5.4.4 單次電漿處理 vs 二次電漿處理對共培養系統ROS 含量之比較. 56 5.5 Summary ................................. 58 結論..................................59 未來展望...............................60 參考文獻...............................61 附錄 1...............................68

    [1] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy
    of Sciences of the United States of America, vol. 14, no. 8, p. 627, 1928.
    [2] B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, and Q. Xue, "Review on
    electrical discharge plasma technology for wastewater remediation," Chemical
    Engineering Journal, vol. 236, pp. 348-368, 2014.
    [3] S. de Valence, J.-C. Tille, C. Chaabane, R. Gurny, M.-L. Bochaton-Piallat, B. H.
    Walpoth, and M. Möller, "Plasma treatment for improving cell biocompatibility of
    a biodegradable polymer scaffold for vascular graft applications," European
    Journal of Pharmaceutics and Biopharmaceutics, vol. 85, no. 1, pp. 78-86, 2013.
    [4] T. G. Klämpfl, G. Isbary, T. Shimizu, Y.-F. Li, J. L. Zimmermann, W. Stolz, J.
    Schlegel, G. E. Morfill, and H.-U. Schmidt, "Cold atmospheric air plasma
    sterilization against spores and other microorganisms of clinical interest," Applied
    and Environmental Microbiology, vol. 78, no. 15, pp. 5077-5082, 2012.
    [5] F. Intranuovo, R. Gristina, L. Fracassi, L. Lacitignola, A. Crovace, and P. Favia,
    "Plasma Processing of Scaffolds for Tissue Engineering and Regenerative
    Medicine," Plasma Chemistry and Plasma Processing, journal article vol. 36, no.
    1, pp. 269-280, 2016.
    [6] L.-C. Xu and C. A. Siedlecki, "Effects of surface wettability and contact time on
    protein adhesion to biomaterial surfaces," Biomaterials, vol. 28, no. 22, pp. 3273-
    3283, 2007.
    [7] J. Schlegel, J. Köritzer, and V. Boxhammer, "Plasma in cancer treatment," Clinical
    Plasma Medicine, vol. 1, no. 2, pp. 2-7, 2013.
    [8] F. Gregory, S. Alexey, J. Monika, B. Ari, F. Alexander, G. Alexander, V. Victor,
    and F. Gary, "Floating Electrode Dielectric Barrier Discharge Plasma in Air
    Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines," Plasma
    Chemistry & Plasma Processing, Article vol. 27, no. 2, pp. 163-176, 2007.
    [9] X. Sun, M. Ai, Y. Wang, S. Shen, Y. Gu, Y. Jin, Z. Zhou, Y. Long, and Q. Yu,
    "Selective Induction of Tumor Cell Apoptosis by a Novel P450-mediated Reactive
    Oxygen Species (ROS) Inducer Methyl 3-(4-Nitrophenyl) Propiolate," Journal of
    Biological Chemistry, vol. 288, no. 13, pp. 8826-8837, 2013.
    [10] S. U. Kang, J. H. Cho, J. W. Chang, Y. S. Shin, K. I. Kim, J. K. Park, S. S. Yang,
    J. S. Lee, E. Moon, K. Lee, and C. H. Kim, "Nonthermal plasma induces head and
    neck cancer cell death: the potential involvement of mitogen-activated protein
    kinase-dependent mitochondrial reactive oxygen species," Cell Death and Disease,
    vol. 5, p. e1056, 2014.
    [11] H. J. Ahn, K. I. Kim, N. N. Hoan, C. H. Kim, E. Moon, K. S. Choi, S. S. Yang,and J.-S. Lee, "Targeting Cancer Cells with Reactive Oxygen and Nitrogen
    Species Generated by Atmospheric-Pressure Air Plasma," PLOS ONE, vol. 9, no.
    1, p. e86173, 2014.
    [12] A. G. Renehan, C. Booth, and C. S. Potten, "What is apoptosis, and why is it
    important? ," BMJ, vol. 322, no. 7301, p. 1536, 2001.
    [13] J. M. Adams and S. Cory, "The Bcl-2 apoptotic switch in cancer development and
    therapy," Oncogene, vol. 26, pp. 1324- 1337, 2007.
    [14] S. L. Fink and B. T. Cookson, "Apoptosis, pyroptosis, and necrosis: mechanistic
    description of dead and dying eukaryotic cells," Infection and immunity, vol. 73,
    no. 4, pp. 1907-1916, 2005.
    [15] N. K. Haass and U. Schumacher, "Melanoma never says die," Experimental
    dermatology, vol. 23, no. 7, pp. 471-472, 2014.
    [16] S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A.
    Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, "Preferential induction
    of apoptotic cell death in melanoma cells as compared with normal keratinocytes
    using a non-thermal plasma torch," Cancer biology and therapy, vol. 13, no. 13,
    pp. 1299-1306, 2012.
    [17] G. Xu, J. Liu, C. Yao, S. Chen, F. Lin, P. Li, X. Shi, and G.-J. Zhang, "Effects of
    atmospheric pressure plasma jet with floating electrode on murine melanoma and
    fibroblast cells," Physics of Plasmas, vol. 24, no. 8, p. 083504, 2017.
    [18] E. J. Szili, S.-H. Hong, J.-S. Oh, N. Gaur, and R. D. Short, "Tracking the
    penetration of plasma reactive species in tissue models," Trends in biotechnology,
    vol. 36, no. 6, pp. 594-602, 2018.
    [19] S. Arndt, E. Wacker, Y. F. Li, T. Shimizu, H. M. Thomas, G. E. Morfill, S. Karrer,
    J. L. Zimmermann, and A. K. Bosserhoff, "Cold atmospheric plasma, a new
    strategy to induce senescence in melanoma cells," Experimental dermatology, vol.
    22, no. 4, pp. 284-289, 2013.
    [20] D. B. Graves, "The emerging role of reactive oxygen and nitrogen species in redox
    biology and some implications for plasma applications to medicine and biology,"
    Journal of Physics D: Applied Physics, vol. 45, no. 26, p. 263001, 2012.
    [21] G. Isbary, J. L. Zimmermann, T. Shimizu, Y.-F. Li, G. E. Morfill, H. M. Thomas,
    B. Steffes, J. Heinlin, S. Karrer, and W. Stolz, "Non-thermal plasma—More than
    five years of clinical experience," Clinical Plasma Medicine, vol. 1, no. 1, pp. 19-
    23, 2013.
    [22] S. Bekeschus, K. Rödder, B. Fregin, O. Otto, M. Lippert, K.-D. Weltmann, K.
    Wende, A. Schmidt, and R. K. Gandhirajan, "Toxicity and Immunogenicity in
    Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants,"
    Oxidative Medicine and Cellular Longevity, vol. 2017, p. 12, 2017, Art no.4396467.
    [23] M. Wang, B. M. Geilich, M. Keidar, and T. J. Webster, "Killing malignant
    melanoma cells with protoporphyrin IX-loaded polymersome-mediated
    photodynamic therapy and cold atmospheric plasma," (in eng), International
    journal of nanomedicine, vol. 12, pp. 4117-4127, 2017.
    [24] G. Li, K. Satyamoorthy, F. Meier, C. Berking, T. Bogenrieder, and M. Herlyn,
    "Function and regulation of melanoma–stromal fibroblast interactions: when seeds
    meet soil," Oncogene, vol. 22, no. 20, p. 3162, 2003.
    [25] F. A. Villamena, "Chemistry of reactive species," Molecular basis of oxidative
    stress–chemistry, mechanism, and disease pathogenesis. John Wiley & Sons, Inc.,
    Hoboken, pp. 1-48, 2013.
    [26] X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov,
    "Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation,
    transport, and biological effects," Physics Reports, vol. 630, pp. 1-84, 2016.
    [27] H. J. Ahn, K. I. Kim, G. Kim, E. Moon, S. S. Yang, and J.-S. Lee, "Atmospheric-
    Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of
    Free Radicals," PLOS ONE, vol. 6, no. 11, p. e28154, 2011.
    [28] S. Mohades, N. Barekzi, H. Razavi, V. Maruthamuthu, and M. Laroussi,
    "Temporal evaluation of the anti-tumor efficiency of plasma-activated media,"
    Plasma Processes and Polymers, vol. 13, no. 12, pp. 1206-1211, 2016.
    [29] G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, "DNA damage and mitochondria
    dysfunction in cell apoptosis induced by nonthermal air plasma," Applied Physics
    Letters, vol. 96, no. 2, p. 021502, 2010.
    [30] J. Gay-Mimbrera, M. C. García, B. Isla-Tejera, A. Rodero-Serrano, A. V. García-
    Nieto, and J. Ruano, "Clinical and Biological Principles of Cold Atmospheric
    Plasma Application in Skin Cancer," Advances in Therapy, vol. 33, no. 6, pp. 894-
    909, 2016.
    [31] M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D.
    Gosset, C. Kieda, B. Legrain, J.-M. Pouvesle, and A. L. Pape, "ROS implication
    in a new antitumor strategy based on non-thermal plasma," International Journal
    of Cancer, vol. 130, no. 9, pp. 2185-2194, 2012.
    [32] H. Tanaka, M. Mizuno, F. Kikkawa, and M. Hori, "Interactions between a plasmaactivated
    medium and cancer cells," Plasma Medicine, vol. 6, no. 1, 2016.
    [33]C. Canal, R. Fontelo, I. Hamouda, J. Guillem-Marti, U. Cvelbar, and M.-P. Ginebra,
    "Plasma-induced selectivity in bone cancer cells death," Free Radical Biology and
    Medicine, vol. 110, pp. 72-80, 2017.
    [34] S. Ikawa, K. Kitano, and S. Hamaguchi, "Effects of pH on bacterial inactivation
    in aqueous solutions due to low‐ temperature atmospheric pressure plasma application," Plasma Processes and Polymers, vol. 7, no. 1, pp. 33-42, 2010.
    [35] M. Wang, B. Holmes, X. Cheng, W. Zhu, M. Keidar, and L. G. Zhang, "Cold
    Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells,"
    PLOS ONE, vol. 8, no. 9, p. e73741, 2013.
    [36] J. Duan, X. Lu, and G. He, "The selective effect of plasma activated medium in an
    in vitro co-culture of liver cancer and normal cells," Journal of Applied Physics,
    vol. 121, no. 1, p. 013302, 2017.
    [37] N. Barekzi, M. Laroussi, G. Konesky, and S. Roman, "Effects of low temperature
    plasma on prostate cancer cells using the Bovie Medical J-Plasma® device,"
    Plasma Processes and Polymers, vol. 13, no. 12, pp. 1189-1194, 2016.
    [38] M. Laroussi, X. Lu, and M. Keidar, "Perspective: The physics, diagnostics, and
    applications of atmospheric pressure low temperature plasma sources used in
    plasma medicine," Journal of Applied Physics, vol. 122, no. 2, p. 020901, 2017.
    [39] N. Barekzi and M. Laroussi, "Effects of Low Temperature Plasmas on Cancer
    Cells," Plasma Processes and Polymers, vol. 10, no. 12, pp. 1039-1050, 2013.
    [40] K. D. Weltmann and T. von Woedtke, "Plasma medicine—current state of research
    and medical application," Plasma Physics and Controlled Fusion, vol. 59, no. 1,
    p. 014031, 2016.
    [41] W. Li, K. N. Yu, L. Bao, J. Shen, C. Cheng, and W. Han, "Non-thermal plasma
    inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK
    pathway and decreasing matrix metalloproteinase-9 expression," Scientific
    Reports, Article vol. 6, p. 19720, 2016.
    [42] N. Barekzi and M. Laroussi, "Dose-dependent killing of leukemia cells by lowtemperature
    plasma," Journal of Physics D: Applied Physics, vol. 45, no. 42, p.
    422002, 2012.
    [43] M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi,
    R. Guerrero-Preston, and B. Trink, "Cold plasma selectivity and the possibility of
    a paradigm shift in cancer therapy," British Journal Of Cancer, vol. 105, p. 1295,
    2011.
    [44] F. Utsumi, H. Kajiyama, K. Nakamura, H. Tanaka, M. Mizuno, K. Ishikawa, H.
    Kondo, H. Kano, M. Hori, and F. Kikkawa, "Effect of Indirect Nonequilibrium
    Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic
    Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo," PLOS ONE, vol. 8,
    no. 12, p. e81576, 2013.
    [45] H. Tresp, M. U. Hammer, J. Winter, K. D. Weltmann, and S. Reuter, "Quantitative
    detection of plasma-generated radicals in liquids by electron paramagnetic
    resonance spectroscopy," Journal of Physics D: Applied Physics, vol. 46, no. 43,
    p. 435401, 2013.
    [46] L. G. Marcu, "The first Rs of radiotherapy: or standing on the shoulders of giants,"
    Australasian physical & engineering sciences in medicine, vol. 38, no. 4, pp. 531-
    541, 2015.
    [47] Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K.-W. Lee, and K. Song,
    "Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in
    p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways," PLOS
    ONE, vol. 9, no. 4, p. e91947, 2014.
    [48] Y. Binenbaum, G. Ben-David, Z. Gil, Y. Z. Slutsker, M. Ryzhkov, J. Felsteiner, Y.
    E. Krasik, and J. Cohen, "Cold atmospheric plasma, created at the tip of an
    elongated flexible capillary using low electric current, can slow the progression of
    melanoma," PLOS ONE, vol. 12, no. 1, p. e0169457, 2017.
    [49] S.-Y. Jeong, J.-H. Lee, Y. Shin, S. Chung, and H.-J. Kuh, "Co-Culture of Tumor
    Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip
    Mimics Reciprocal Activation in Solid Tumor Microenvironment," PLOS ONE,
    vol. 11, no. 7, p. e0159013, 2016.
    [50] B. Cat, D. Stuhlmann, H. Steinbrenner, L. Alili, O. Holtkötter, H. Sies, and P.
    Brenneisen, "Enhancement of tumor invasion depends on transdifferentiation of
    skin fibroblasts mediated by reactive oxygen species," Journal of Cell Science, vol.
    119, no. 13, p. 2727, 2006.
    [51] S.-W. Tyan, W.-H. Kuo, C.-K. Huang, C.-C. Pan, J.-Y. Shew, K.-J. Chang, E. Y. H.
    P. Lee, and W.-H. Lee, "Breast Cancer Cells Induce Cancer-Associated Fibroblasts
    to Secrete Hepatocyte Growth Factor to Enhance Breast Tumorigenesis," PLOS
    ONE, vol. 6, no. 1, p. e15313, 2011.
    [52] C.-C. Jia, T.-T. Wang, W. Liu, B.-S. Fu, X. Hua, G.-Y. Wang, T.-J. Li, X. Li, X.-Y.
    Wu, and Y. Tai, "Cancer-associated fibroblasts from hepatocellular carcinoma
    promote malignant cell proliferation by HGF secretion," PLOS ONE, vol. 8, no. 5,
    p. e63243, 2013.
    [53] K. Matsumoto and T. Nakamura, "Hepatocyte growth factor and the Met system
    as a mediator of tumor–stromal interactions," International Journal of Cancer, vol.
    119, no. 3, pp. 477-483, 2006.
    [54] K. Datta, S. Sinha, and P. Chattopadhyay, "Reactive oxygen species in health and
    disease," (in eng), The National medical journal of India, vol. 13, no. 6, pp. 304-
    310, 2000.
    [55] M. S. Mann, R. Tiede, K. Gavenis, G. Daeschlein, R. Bussiahn, K.-D. Weltmann,
    S. Emmert, T. v. Woedtke, and R. Ahmed, "Introduction to DIN-specification
    91315 based on the characterization of the plasma jet kINPen® MED," Clinical
    Plasma Medicine, vol. 4, no. 2, pp. 35-45, 2016.
    [56] X. Cheng, W. Murphy, N. Recek, D. Yan, U. Cvelbar, A. Vesel, M. Mozetič, J.Canady, M. Keidar, and J. H. Sherman, "Synergistic effect of gold nanoparticles
    and cold plasma on glioblastoma cancer therapy," Journal of Physics D: Applied
    Physics, vol. 47, no. 33, p. 335402, 2014.
    [57] F. Grzegorzewski, "Influence of non-thermal plasma species on the structure and
    functionality of isolated and plant-based 1, 4-benzopyrone derivatives and
    phenolic acids," 2011.
    [58] C. Y. Choo and O. H. Chin, "Study of non-thermal plasma jet with dielectric barrier
    configuration in nitrogen and argon," AIP Conference Proceedings, vol. 1588, no.
    1, pp. 191-195, 2014.
    [59] G. Uchida, K. Takenaka, K. Kawabata, and Y. Setsuhara, "Influence of He Gas
    Flow Rate on Optical Emission Characteristics in Atmospheric Dielectric-Barrier-
    Discharge Plasma Jet," IEEE Transactions on Plasma Science, vol. 43, no. 3, pp.
    737-744, 2015.
    [60] E. J. Baek, H. M. Joh, S. J. Kim, and T. H. Chung, "Effects of the electrical
    parameters and gas flow rate on the generation of reactive species in liquids
    exposed to atmospheric pressure plasma jets," Physics of Plasmas, vol. 23, no. 7,
    p. 073515, 2016.
    [61] J. Nordberg and E. S. J. Arnér, "Reactive oxygen species, antioxidants, and the
    mammalian thioredoxin system," Free Radical Biology and Medicine, vol. 31, no.
    11, pp. 1287-1312, 2001.
    [62] B. Halliwell, M. V. Clement, and L. H. Long, "Hydrogen peroxide in the human
    body," FEBS Letters, vol. 486, no. 1, pp. 10-13, 2000.
    [63] J. P. Kehrer, "The Haber–Weiss reaction and mechanisms of toxicity," Toxicology,
    vol. 149, no. 1, pp. 43-50, 2000.
    [64] M. Uhlen, P. Oksvold, L. Fagerberg, E. Lundberg, K. Jonasson, M. Forsberg, M.
    Zwahlen, C. Kampf, K. Wester, and S. Hober, "Towards a knowledge-based
    human protein atlas," Nature biotechnology, vol. 28, no. 12, p. 1248, 2010.
    [65] D. Erudaitius, A. Huang, S. Kazmi, G. R. Buettner, and V. G. Rodgers,
    "Peroxiporin expression is an important factor for cancer cell susceptibility to
    therapeutic H2O2: implications for pharmacological ascorbate therapy," PLOS
    ONE, vol. 12, no. 1, p. e0170442, 2017.
    [66] M. H. T. Ngo, J. D. Liao, P. L. Shao, C. C. Weng, and C. Y. Chang, "Increased
    Fibroblast Cell Proliferation and Migration Using Atmospheric N2/A r Micro‐
    Plasma for the Stimulated Release of Fibroblast Growth Factor‐ 7," Plasma
    Processes and Polymers, vol. 11, no. 1, pp. 80-88, 2014.
    [67] D. Xu, D. Liu, B. Wang, C. Chen, Z. Chen, D. Li, Y. Yang, H. Chen, and M. G.
    Kong, "In Situ OH Generation from O2− and H2O2 Plays a Critical Role in
    Plasma-Induced Cell Death," PLOS ONE, vol. 10, no. 6, p. e0128205, 2015.
    [68] C. Danciu, A. Falamas, C. Dehelean, C. Soica, H. Radeke, L. Barbu-Tudoran, F.
    Bojin, S. C. Pînzaru, and M. F. Munteanu, "A characterization of four B16 murine
    melanoma cell sublines molecular fingerprint and proliferation behavior," Cancer
    Cell International, vol. 13, no. 1, p. 75, 2013.
    [69] I. Assanga and L. Lujan, "Cell growth curves for different cell lines and their
    relationship with biological activities," International Journal of Biotechnology
    and Molecular Biology Research, vol. 4, no. 4, pp. 60-70, 2013.
    [70] P. Strojan, "Role of radiotherapy in melanoma management," Radiology and
    oncology, vol. 44, no. 1, pp. 1-12, 2010.
    [71] D. R. Hipfner and S. M. Cohen, "Connecting proliferation and apoptosis in development and disease," Nature Reviews Molecular Cell Biology, vol. 5, no. 10, p. 805, 2004.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE