| 研究生: |
詹仲捷 Chan, Chung-Chieh |
|---|---|
| 論文名稱: |
防禦型投資股票支援分析-以台灣上市公司為例 |
| 指導教授: |
耿伯文
Kreng, Victor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 防禦型 、財務比率 、相關係數 、倒傳遞網路 |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從民國五十年台灣股市成立以來,企業所發行的股票價格時常受到非本身營運因素(如兩岸之間的危機談話、國際戰爭、或者股票投機客..等等)所干擾,導致股票價格有如暴漲暴跌一樣的漲跌,當這些因素所干擾完後,最終還是回歸於公司基本面分析,若找出財務面健全的公司,可以買進並持久,而不隨著非本身營運因素所影響,相信與在自己股票投資獲利上,會有較好的成績。
本研究主要是以財務指標來針對目前台灣的上市公司來做檢測,先找出防禦型條件的企業,然後找出較會影響對這些優良公司營運的財務指標,最後研究以這些財務指標去預測公司近期的股票價格,而此為本研究的最終目的。
挑選出防禦型條件的公司,是利用Graham與Buffett學者所提出的方法來挑選出這些公司,再來是使用統計之相關係數方法找出較為影響公司的財務指標,故希望由相關係數的方法來找出前二十個與股價最有相關的財務指標,最後是以倒傳遞類神經方法用找出這些財務指標來預測公司的股票價格,在倒傳遞類神經方法具有不錯的預測的功能,可以使用其財務指標來預測出公司近期的股票價格,來提供這些資訊來支援投資人投資股票的決策,以獲得更好的獲利。
陳一吉(民88)。巴菲特原則在我國股市適用性之研究,實錢大學企業管理研究所碩士論文,未出版,台北縣。
孫宗瀛、楊英魁(民88)。Fuzzy控制:理論、實作與應用(五版)。台北市:全華。
韋從序(民86)。統計學。台北市:正中書局。
葉怡成(民89)。應用類神經網路。台北市:儒林出版社。
Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of Accounting Research, 35(1), 1-25.
Abid, F., & Zouari, A. (2002). Predicting corporate financial distress: A New Neural Networks Approach. Finance India, 16(2), 601-612.
American Accounting Association. (1966). Committee to prepare a statement of basic accounting theory, a statement of basic accounting theory. Evanston, Ill.: AAA, 1.
Baba, N., & Kozaki, M. (1992). An intelligent forecasting system of stock price using neural networks, IJCNN-1992, I, 652-657.
Bauer, R. (1995). Genetic algorithms and investment strategies. New York: John Wiley & Sons.
Bessembinder, H., & Chan, K. (1998). Market efficiency and the returns to technical analysis. Financial Management, 27(2), 5-17.
Buffett, M., & David, C. (1999). Buffettology: The previously unexplained techniques that have made warren buffett the word’s famous investor. Carolina: Fireside.
Buffett, W., & Janet, C. L. (1997). Warren buffett speaks: wit and wisdom from the world's greatest investor. New York: John Wiley & Sons.
Dorsey, R. E., & Mayer, W. J. (1995). Genetic algorithms for estimation problems with multiple optima, non-differentiability, and other irregular features. Journal of Business and Economic Statistics, 13(1), 53-66.
Fama, E. F. (1965). The behavior of stock market prices. Journal of Business. 285-299.
Fama, E. F. (1970). Efficient capital markets: a review of theory and empirical work. Journal of Finance, 25, 383-417.
Financial Accounting Standards Board. (1984). Recognition and measurement in financial statements of business enterprises, (Statement of Financial Accounting Concepts No.5). Stamford, Conn.: FASB.
Frank, K. R. (1985). Investment analysis and portfolio management. (2nd ed. ). New York: Dryden Press.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Boston: Addison-Wesley Publishing Co.
Graham, B. (1985). Intelligent investor. (4th ed. ). New York: Harper & Row.
Graham, B., & David, L. D. (1998). (5th ed. ). Security analysis. Ontario: McGraw-Hill Trade.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Michigan: University of Michigan Press.
John, B. W. (2001). The theory of investment value. (5th ed. ). New Jersey: Prentice-Hall.
Kim, K. J., & Han, I. (2000). Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Systems with Applications, 19, 125-132.
Kuo, R. J., Chen, C. H., & Hwang, Y. C. (2001). An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets and Systems, 118, 21-45.
Levy, R. A. (1966). Conceptual foundation of technical analysis, financial
analysis journal, 84-85.
Meir, S., & Jonathan, S. (2002). Buffett in foresight and hindsight. Financial Analysts Journal, 58(4), 11-18.
Michael, J. A. B., & Gordon, S. L. (1997). Data mining techniques for marketing, sales, and customer support. New Jersey: John Wiley & Sons.
Millier, K. L., Ooi, C. K., & Sorensen, E. H. (2000). The decision tree approach to stock selection — an evolving tree model performs the best. The Journal of Portfolio Management. 27(1), 42-52.
O’connor, M. C. (1973). On the usefulness of financial ratios to investors in common
stock. The Accounting Review, 48(4), 239-352.
Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock return. Journal of Accounting and Economics, 11(4), 295-329.
Pring, M. J. (1998). Technical Analysis Explained. (2nd ed. ). Ontario: Mcgraw Hill Trade.
Richard, B. L. (1999). Select winning stocks using financial statements: get inside a company's financial, use the pro's favorite selection tools, determine key investment. Chicago: Dearborn Trade.
Robert, D. E., & John, M. (1966). Technical analysis of stock trends. (5th ed. ). Boston Mass: John Magee Inc.
Robert, G. H. J. (1997). The warren buffet way. (2nd ed. ). New Jersey: John Wiley & Sons.
Yoon, Y., & Swales, G. (1991). Predicting stock price performance: a neural network approach, proceedings of the twenty-fourth annual Hawaii international. Conference on System Science, 4, 156-162.
Villiers, J., & Barnard E. (1992). Back propagation neural nets with one and two hidden layers. IEEE Transactions on Neural Network, 31(3), 573-586.
Wang, Y. F. (2002). Predicting stock price using fuzzy grey prediction system. Expert Systems with Application , 22(1), 33-39.
William, L., Russell, P., & James, M. R. (2002). Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. Decision Support Systems, 32(4), 361-377.