簡易檢索 / 詳目顯示

研究生: 滕書昂
Teng, Shu-Ang
論文名稱: 相對論性量子力學中的Klein悖論
The Klein Paradox in Relativistic Quantum Mechanics
指導教授: 楊緒濃
Nyeo, Su-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 69
中文關鍵詞: Klein悖論Klein-Gordon方程式Dirac方程式相對論性量子力學量子場論
外文關鍵詞: Klein paradox, Klein-Gordon equation, Dirac equation, relativistic quantum mechanics, quantum field theory
相關次數: 點閱:173下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Klein悖論是物理學家Oskar Klein在西元1929年間,利用Dirac方程式,分析處於強電場中的電子之散射現象時,發現一個意外的結果。他對該電子進行分析,後來發現到電子的反射係數會大於一,穿透係數會小於零。以相對論性量子力學的理論來看待這個結果,是令人難以理解的,原因是當時的物理學家對Dirac方程式的詮釋是錯誤的,後來才發現這個意外的結果其實是跟粒子的生成與湮滅有關。他們發現相對論量子力學的理論不夠完整,並以新的概念來對Dirac方程式作詮釋,後來漸漸建立了量子場論這套新的理論。
    在這篇論文中,首先會介紹相對論量子力學的發展史,第二~三章會介紹相對論性自由粒子的負能量解及介紹Klein-Gordon方程式及Dirac方程式的代數性質,第四~六章則會利用Schrödinger方程式,Pauli方程式,Klein-Gordon方程式以及Dirac方程式,來對Klein悖論做延伸性的思考,來說明為何相對論量子力學的理論架構不夠完整。

    Klein Paradox was an unexpected result published by Oskar Klein in 1929. He obtained a surprising result by applying the Dirac equation to study the electron scattering off a strong potential. Klein assumed that the potential energy of the electron was a high step function potential and found that the transmission coefficient was greater than unity and the reflection coefficient was negative. This result cannot be explained within the framework of relativistic quantum mechanics. It is known that the paradox can be resolved by considering quantum field theory in which pair production and annihilation of the particles and anti-particles are essential properties.  In this thesis, we shall describe the Klein paradox in relativistic quantum mechanics. We shall explicitly calculate the solutions of the Schrödinger equation, the Klein-Gordon equation and the Dirac equation of a particle in several potentials, which include the step function potential and the potential barrier. The calculations of the solutions of the equations with the potentials are given. We make no attempt to resolve the paradox by considering quantum field theory.

    1 Introduction 1 2 Solution to the Klein-Gordon Equation for free Particle 3 2.1 The Negative Energy Solution 3 2.2 The Spin Operator in the Klein-Gordon Equation 4 3 Solution to the Dirac Equation for Free Particle 8 3.1 The Negative Energy Solution 8 3.2 The Wave Functions for Free Particle 9 3.3 The Spin Operator in the Klein-Gordon Equation 11 3.4 Non-relativistic Limit 12 4 The Klein Paradox 13 4.1 Electron in the Step Potential (Non-relativistic Case) 13 4.2 Electron in the Step Potential (Relativistic Case) 14 5 Particle in the Negative Step Potential 16 5.1 Non-relativistic Case 16 5.2 Relativistic Spin-0 Particle 18 5.3 Relativistic Spin-1/2 Particle 20 6 Particle in the Potential Barrier 28 6.1 Non-relativistic Case 28 6.2 Relativistic Spin-0 Particle 33 6.3 Relativistic Spin-1/2 Particle 35 6.4 The Wide Barrier 40 7 Particle in the Potential Well 42 7.1 Non-relativistic Case 42 7.2 Relativistic Spin-0 Particle 43 7.3 Relativistic Spin-1/2 Particle 44 8 Conclusion 45 A The Equations of Quantum Mechanics 48 A.1 The Schrödinger Equation and the Pauli Equation 48 A.2 The Klein-Gordon Equation 51 A.2.1 The Klein-Gordon Equation for a Free Particle 51 A.2.2 Electromagnetic Interaction of a Relativistic Spin-0 Particle 53 A.3 The Dirac Equation 54 A.3.0.1 The Dirac Equation for a Free Particle 54 A.3.1 The Matrices and the Matrix 57 A.3.1.1 The Spin Operator in the Dirac Equation 60 A.3.1.2 Electromagnetic Interaction of the Relativistic Spin-1/2 Particle 64 B The Continuity Equations 65 B.1 The Continuity Equation of the Schrödinger Equation 65 B.2 The Continuity Equation of the Klein-Gordon Equation 66 B.3 The Continuity Equation of the Dirac Equation 68

    [1] P. A. M. Dirac, The Quantum Theory of the Electron,Proc. R. Soc. Lond. A 117, pp.610-624 (1928).
    [2] O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der Relativistischen Dynamik von Dirac, Z. Phys. 53, pp.157-65 (1929).
    [3] F. Gross, Relativistic Quantum Mechanics and Field Theory, Wiley-VCH, New York (1993).
    [4] 曾謹言, 量子力學卷II (第五版), 科學, 北京(2014)
    [5] M. J. Thomson and B. H. J. McKellar, The solution of the Dirac equation for a high square barrier, Am. J. Phys. 59(4), pp.340-346 (1991).
    [6] R. Shankar, Principles of Quantum Mechanics (Second Edition), Plenum Press, New York (2011).
    [7] R. G. Winter, Klein Paradox for the Klein-Gordon Equation, Am Am. J. Phys. 27 (5), pp.355-358 (1959).
    [8] L. H. Ryder, Quantum Field Theory (Second Edition), Cambridge University Press, New York (1996).
    [9] D. Griffiths, Introduction to Elementary Particles (Second Edition), Wiley-VCH, Weinheim (2008).
    [10] P. L. Garrido, S. Goldstein, J. Lukkarinen, and R. Tumulka, Paradoxical reflection in quantum mechanics, Am. J. Phys. 79 (12), pp.1218-1231 (2011).
    [11] A. Hansen and F. Ravndal, Klein’s Paradox and Its Resolution, Physical Scripta 23, pp.1036-1042 (1981).
    [12] B. R. Holstein, Klein’s Paradox, Am. J. Phys. 66 (6), pp.507-512 (1998).
    [13] S. Gasiorowicz, Quantum Physics (Third Edition), John Wiley, New York (2003).
    [14] P. Šeba, Klein’s Paradox and the Relativistic Point Interaction, Letters in Mathematical Physics (1) , pp 77-86 (1989).
    [15] J. J. Sakurai, Modern Quantum Mechanics (Revised edition), Addison-Wesley, Reading, Mass. (1993).
    [16] F. Mandl and G. Shaw, Relativistic Quantum Mechanics and Field Theory (Second Edition), Wiley, Manchester (2010).
    [17] N. Dombey and A. Calogeracos, Seventy years of the Klein Paradox, Physics Reports 315 (1), pp. 41-58 (1999).

    下載圖示 校內:2017-02-02公開
    校外:2017-02-02公開
    QR CODE