| 研究生: |
滕書昂 Teng, Shu-Ang |
|---|---|
| 論文名稱: |
相對論性量子力學中的Klein悖論 The Klein Paradox in Relativistic Quantum Mechanics |
| 指導教授: |
楊緒濃
Nyeo, Su-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | Klein悖論 、Klein-Gordon方程式 、Dirac方程式 、相對論性量子力學 、量子場論 |
| 外文關鍵詞: | Klein paradox, Klein-Gordon equation, Dirac equation, relativistic quantum mechanics, quantum field theory |
| 相關次數: | 點閱:173 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Klein悖論是物理學家Oskar Klein在西元1929年間,利用Dirac方程式,分析處於強電場中的電子之散射現象時,發現一個意外的結果。他對該電子進行分析,後來發現到電子的反射係數會大於一,穿透係數會小於零。以相對論性量子力學的理論來看待這個結果,是令人難以理解的,原因是當時的物理學家對Dirac方程式的詮釋是錯誤的,後來才發現這個意外的結果其實是跟粒子的生成與湮滅有關。他們發現相對論量子力學的理論不夠完整,並以新的概念來對Dirac方程式作詮釋,後來漸漸建立了量子場論這套新的理論。
在這篇論文中,首先會介紹相對論量子力學的發展史,第二~三章會介紹相對論性自由粒子的負能量解及介紹Klein-Gordon方程式及Dirac方程式的代數性質,第四~六章則會利用Schrödinger方程式,Pauli方程式,Klein-Gordon方程式以及Dirac方程式,來對Klein悖論做延伸性的思考,來說明為何相對論量子力學的理論架構不夠完整。
Klein Paradox was an unexpected result published by Oskar Klein in 1929. He obtained a surprising result by applying the Dirac equation to study the electron scattering off a strong potential. Klein assumed that the potential energy of the electron was a high step function potential and found that the transmission coefficient was greater than unity and the reflection coefficient was negative. This result cannot be explained within the framework of relativistic quantum mechanics. It is known that the paradox can be resolved by considering quantum field theory in which pair production and annihilation of the particles and anti-particles are essential properties. In this thesis, we shall describe the Klein paradox in relativistic quantum mechanics. We shall explicitly calculate the solutions of the Schrödinger equation, the Klein-Gordon equation and the Dirac equation of a particle in several potentials, which include the step function potential and the potential barrier. The calculations of the solutions of the equations with the potentials are given. We make no attempt to resolve the paradox by considering quantum field theory.
[1] P. A. M. Dirac, The Quantum Theory of the Electron,Proc. R. Soc. Lond. A 117, pp.610-624 (1928).
[2] O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der Relativistischen Dynamik von Dirac, Z. Phys. 53, pp.157-65 (1929).
[3] F. Gross, Relativistic Quantum Mechanics and Field Theory, Wiley-VCH, New York (1993).
[4] 曾謹言, 量子力學卷II (第五版), 科學, 北京(2014)
[5] M. J. Thomson and B. H. J. McKellar, The solution of the Dirac equation for a high square barrier, Am. J. Phys. 59(4), pp.340-346 (1991).
[6] R. Shankar, Principles of Quantum Mechanics (Second Edition), Plenum Press, New York (2011).
[7] R. G. Winter, Klein Paradox for the Klein-Gordon Equation, Am Am. J. Phys. 27 (5), pp.355-358 (1959).
[8] L. H. Ryder, Quantum Field Theory (Second Edition), Cambridge University Press, New York (1996).
[9] D. Griffiths, Introduction to Elementary Particles (Second Edition), Wiley-VCH, Weinheim (2008).
[10] P. L. Garrido, S. Goldstein, J. Lukkarinen, and R. Tumulka, Paradoxical reflection in quantum mechanics, Am. J. Phys. 79 (12), pp.1218-1231 (2011).
[11] A. Hansen and F. Ravndal, Klein’s Paradox and Its Resolution, Physical Scripta 23, pp.1036-1042 (1981).
[12] B. R. Holstein, Klein’s Paradox, Am. J. Phys. 66 (6), pp.507-512 (1998).
[13] S. Gasiorowicz, Quantum Physics (Third Edition), John Wiley, New York (2003).
[14] P. Šeba, Klein’s Paradox and the Relativistic Point Interaction, Letters in Mathematical Physics (1) , pp 77-86 (1989).
[15] J. J. Sakurai, Modern Quantum Mechanics (Revised edition), Addison-Wesley, Reading, Mass. (1993).
[16] F. Mandl and G. Shaw, Relativistic Quantum Mechanics and Field Theory (Second Edition), Wiley, Manchester (2010).
[17] N. Dombey and A. Calogeracos, Seventy years of the Klein Paradox, Physics Reports 315 (1), pp. 41-58 (1999).