| 研究生: |
蔡孟松 Tsai, Meng-Song |
|---|---|
| 論文名稱: |
過氧化氫/氫氧自由基及紫外光對微囊藻生長影響及細胞與毒素破壞之研究 Impact of Hydrogen Peroxide, Hydroxyl Radical and UV-A Light on the Growth of Microcysis aeruginosa, Cell Integrity and Microcystin Degradation |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 二氧化鈦 、過氧化氫 、氫氧自由基 、UVA 、微囊藻 、微囊藻毒 、Dual-oxidant 動力模式 |
| 外文關鍵詞: | Titanium dioxide, Hydrogen peroxide, Hydroxyl radical, UV-A, Microcystis, Microcystins, Dual-oxidant kinetic model |
| 相關次數: | 點閱:152 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為控制水庫藍綠菌及其有害代謝物,本研究擬開發光催化材料,並探討其應用於水庫,控制藍綠菌及破壞藻毒素及臭味物質之可行性。
研究中首先探討二氧化鈦固定化技術,包括以旋轉塗佈法、水熱法、共濺鍍法等進行製備二氧化鈦薄膜,並以自由基生成、二氧化鈦釋出風險及材料特性分析等因素,決定最佳化之二氧化鈦薄膜。其後,並以最佳化之二氧化鈦薄膜,結合紫外光及過氧化氫,進行藍綠菌及藻毒素之光催化氧化試驗、及藍綠菌抑制生長試驗。研究中以銅綠微囊藻(Microcystis aeruginosa)為代表性藍綠菌,氧化實驗過程中,並分析細胞完整性、細胞活性、自由基濃度、過氧化氫殘餘濃度、微囊藻毒素濃度等,以掌握試驗結果。
研究結果顯示,以二氧化鈦薄膜、UV搭配使用,可成為一自由基殺藻系統,成功產生10^(-15)M之自由基濃度,長期作用下對藻體進行破壞,然自由基濃度卻不足以在數小時內降解釋出之微囊藻毒素。若以過氧化氫與二氧化鈦薄膜/UVA或與UVA搭配使用,則呈現較佳之細胞破壞效果,且能有效降解微囊藻毒素,但二氧化鈦薄膜/過氧化氫/UV系統有過氧化氫大量消耗的現象,其一階降解常數約為無二氧化鈦薄膜催化時之8至9倍,進而使氫氧自由基產量驟降,顯示過氧化氫之消耗對本系統影響甚鉅。若控制二氧化鈦薄膜之放入時間與藻毒素大量釋出之時間重疊,對藻毒降解實驗效果更佳,顯示改變薄膜投入時間,能加強目標污染物之降解。
微囊藻抑制生長實驗顯示,系統中可產生低濃度(~10^(-16) M)氫氧自由基,系統在十六天內對微囊藻生長具抑制作用,並可使微囊藻毒降至世界衛生組織之建議值以下。該實驗亦發現微囊藻長期於UVA光照下,生長亦會受影響,比生長速率僅為控制組之1/3,其原因待後續進一部探討。
研究中藉Delayed Chick Watson Model及Delayed Hom Model兩個動力模式,分離過氧化氫與氫氧自由基對細胞破裂的影響;並以上述模式及藻毒素二階降解模式,模擬氧化試驗系統中藻細胞破裂及毒素破壞行為,結果顯示該二模式可有效模擬細胞破裂、及後續的總微囊藻毒素降解,可作為後續二氧化鈦薄膜/過氧化氫/UVA系統應用之參考。
To control the cyanobacteria and their metabolites in source water, in this study titanium dioxide (TiO2) thin film and hydrogen peroxide (H2O2) were combined with UV-A illumination were examined for their effect on cell integrity and metabolites degradation. In first part, TiO2 thin films were first synthesized using three approaches, including spin coating, hydrothermal, and co-sputtering methods. The best TiO2 thin film synthesized, spin coating at 1500 rpm (SC1500), was obtained based on high hydroxyl radical production and low nanoparticle release. The SC1500 was then analyzed surface properties and used in the batch oxidation and batch incubation experiments for cyanobacteria control.
To understand the effect of hydroxyl radical, H2O2, and UV-A light on cell integrity and microcystins (MCs), oxidation experiments were conducted, using Microcystis aeruginosa as the studied cyanobacterium. In the experiments, cell integrity, hydroxyl radical concentration, residual hydrogen peroxide, MCs concentration were measured, and cell number and cell activity are additionally analyzed in incubation experiments.
The results showed that exposure to long-term hydroxyl radical, for the TiO2 thin film/UV-A system and average radical concentration = 110-15 M, the integrity of
Microcystis cells were impacted. However, the MCs released from the ruptured cells were not degraded. For the system with H2O2, TiO2 thin film and UV-A, the cells were ruptured and the released MCs were more efficiently degraded by radical produced, if compared to the system without addition of H2O2. In addition, adjusting the placing time of TiO2 thin film into the H2O2/UV-A system might enhance the degradation of MCs. Nevertheless, the consumption of H2O2 which resulted in low H2O2 concentration and low hydroxyl radical production, might slow down the reaction rate with Microcystis cells and MCs. For incubation test, it showed low concentration of hydroxyl radical (TiO2 thin film/UV-A system, 10-16M) can inactivate the Microcystis in 16 days, maintaining the MCs concentration to below the guideline value in drinking water announced by WHO. In addition, UV-A irradiance may also inhibit the growth of Microcystis.
Two dual-oxidant kinetic models, including Delayed Chick-Watson Model and Delayed Hom model, were developed and successfully simulated the experimental data of cell integrity. The rate constants between Microcystis cells and H2O2 as well as hydroxyl radical in TiO2 thin film/H2O2/UV-A system were successfully determined by the developed model. The kinetic models for cell rupture were further combined with MCs degradation model to predict the change of MCs concentration over time, and reasonable fits were found between the models and data. The developed models and extracted rate constants may be used to predict cell rupture and MCs degradation when applying TiO2 thin film and H2O2 in natural water for the control the cyanobacteria and metabolites.
[1]Ahmed, S., M. G. Rasul, W. N. Martens, R. Brown and M. A. Hashib (2010). "Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review." Water, Air, & Soil Pollution 215(1-4): 3-29.
[2]Ajmal, A., I. Majeed, R. N. Malik, H. Idriss and M. A. Nadeem (2014). "Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview." Rsc Advances 4(70): 37003-37026.
[3]Al Momani, F., D. W. Smith and M. Gamal El-Din (2008). "Degradation of cyanobacteria toxin by advanced oxidation processes." J Hazard Mater 150(2): 238-249.
[4]Alam, M. Z. B., M. Otaki, H. Furumai and S. Ohgaki (2001). "Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation." Water Research 35(4): 1008-1014.
[5]Antoniou, M. G., A. A. de la Cruz and D. D. Dionysiou (2010). "Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms." Applied Catalysis B: Environmental 96(3-4): 290-298.
[6]Antoniou, M. G., P. A. Nicolaou, J. A. Shoemaker, A. A. de la Cruz and D. D. Dionysiou (2009). "Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR." Applied Catalysis B: Environmental 91(1-2): 165-173.
[7]Antoniou, M. G. S., Jody A.; de la Cruz, Armah A.; Dionysiou, Dionysios D (2008). "Unveiling New Degradation Intermediates /Pathways from the Photocatalytic Degradation of Microcystin-LR " Environmental Science & Technology 42(23): 8877-8883.
[8]APHA (1998). Phytoplankton Counting Techniques Standard Method 10200F. Phytoplankton Counting Techniques. America.
[9]Aruoja, V., H. C. Dubourguier, K. Kasemets and A. Kahru (2009). "Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata." Sci Total Environ 407(4): 1461-1468.
[10]Bamuza-Pemu, E. E. and E. M. N. Chirwa (2012). "Photocatalytic degradation of geosmin: Reaction pathway analysis." Water SA 38(5).
[11]Barrington, D. J. and A. Ghadouani (2008). "Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater." Environmental science & technology 42(23): 8916-8921.
[12]Behnajady, M. A., N. Modirshahla, M. Shokri, H. Elham and A. Zeininezhad (2008). "The effect of particle size and crystal structure of titanium dioxide nanoparticles on the photocatalytic properties." J Environ Sci Health A Tox Hazard Subst Environ Eng 43(5): 460-467.
[13]Binet, M. and J. Stauber (2006). "Rapid flow cytometric method for the assessment of toxic dinoflagellate cyst viability." Marine environmental research 62(4): 247-260.
[14]Bober, B., K. Pudas, Z. Lechowski and J. Bialczyk (2008). "Degradation of microcystin-LR by ozone in the presence of Fenton reagent." J Environ Sci Health A Tox Hazard Subst Environ Eng 43(2): 186-190.
[15]Bourgeault, A., C. Cousin, V. Geertsen, C. Cassier-Chauvat, F. Chauvat, O. Durupthy, C. Chaneac and O. Spalla (2015). "The challenge of studying TiO2 nanoparticle bioaccumulation at environmental concentrations: crucial use of a stable isotope tracer." Environ Sci Technol 49(4): 2451-2459.
[16]Bouroushian, M. and T. Kosanovic (2012). "Characterization of thin films by low incidence X-ray diffraction." Crystal structure theory and applications 1(03): 35.
[17]Brillas, E., E. Mur, R. Sauleda, L. Sanchez, J. Peral, X. Domènech and J. Casado (1998). "Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes." Applied Catalysis B: Environmental 16(1): 31-42.
[18]Brookes, J., M. Burch, M. Hipsey, L. Linden, J. Antenucci, D. Steffensen, P. Hobson, O. Thorne, D. Lewis and S. Rinck-Pfeiffer (2008). "Practical guide to reservoir management."
[19]Brown, T. M., F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale and A. Di Carlo (2014). "Progress in flexible dye solar cell materials, processes and devices." Journal of Materials Chemistry A 2(28): 10788.
[20]Byrappa, K. and T. Adschiri (2007). "Hydrothermal technology for nanotechnology." Progress in Crystal Growth and Characterization of Materials 53(2): 117-166.
[21]Carey, J. (1992). "An introduction to advanced oxidation processes (AOP) for destruction of organics in wastewater."
[22]Chang, S. C., C. H. Li, J. J. Lin, Y. H. Li and M. R. Lee (2014). "Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets." Chemosphere 99: 49-55.
[23]Chang, S. Y., W. J. Huang, B. R. Lu, G. C. Fang, Y. Chen, H. L. Chen, M. C. Chang and C. F. Hsu (2015). "An Environmentally Friendly Method for Testing Photocatalytic Inactivation of Cyanobacterial Propagation on a Hybrid Ag-TiO(2) Photocatalyst under Solar Illumination." Int J Environ Res Public Health 12(12): 15819-15833.
[24]Chen, J.-J. and H.-H. Yeh (2005). "The mechanisms of potassium permanganate on algae removal." Water research 39(18): 4420-4428.
[25]Cheung, M. Y., S. Liang and J. Lee (2013). "Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health." J Microbiol 51(1): 1-10.
[26]Chick, H. (1908). "An investigation of the laws of disinfection." Journal of Hygiene 8(01): 92-158.
[27]Cho, M., H. Chung, W. Choi and J. Yoon (2004). "Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection." Water Res 38(4): 1069-1077.
[28]Cho, M., H. Chung and J. Yoon (2003). "Disinfection of Water Containing Natural Organic Matter by Using Ozone-Initiated Radical Reactions." Applied and Environmental Microbiology 69(4): 2284-2291.
[29]Chorus, I. (2005). Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries, Fed. Environmental Agency.
[30]Chow, C. W., M. Drikas, J. House, M. D. Burch and R. M. Velzeboer (1999). "The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa." Water Research 33(15): 3253-3262.
[31]Chrzanowski, T. H., R. D. Crotty, J. G. Hubbard and R. P. Welch (1984). "Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater." Microbial Ecology 10(2): 179-185.
[32]Chuangchote, S., J. Jitputti, T. Sagawa and S. Yoshikawa (2009). "Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers." ACS Appl Mater Interfaces 1(5): 1140-1143.
[33]Codd, G., S. Bell, K. Kaya, C. Ward, K. Beattie and J. Metcalf (1999). "Cyanobacterial toxins, exposure routes and human health." European Journal of Phycology 34(4): 405-415.
[34]Cooper, W. J., R. G. Zika, R. G. Petasne and J. M. Plane (1988). "Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight." Environmental science & technology 22(10): 1156-1160.
[35]Coral, L. A., A. Zamyadi, B. Barbeau, F. J. Bassetti, F. R. Lapolli and M. Prevost (2013). "Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: impacts on cell integrity and chlorination by-product formation." Water Res 47(9): 2983-2994.
[36]Cornish, B. J., L. A. Lawton and P. K. Robertson (2000). "Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide." Applied Catalysis B: Environmental 25(1): 59-67.
[37]CRC (2004). "Blue Green Algae: A Guide." Cooperative Research Center (CRC) for Water Quality and Treatment
[38]Dalai, S., S. Pakrashi, N. Chandrasekaran and A. Mukherjee (2013). "Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system." PLoS One 8(4): e62970.
[39]Dalai, S., S. Pakrashi, M. Joyce Nirmala, A. Chaudhri, N. Chandrasekaran, A. B. Mandal and A. Mukherjee (2013). "Cytotoxicity of TiO(2) nanoparticles and their detoxification in a freshwater system." Aquat Toxicol 138-139: 1-11.
[40]Daly, R. I., L. Ho and J. D. Brookes (2007). "Effect of Chlorination onMicrocystis aeruginosaCell Integrity and Subsequent Microcystin Release and Degradation." Environmental Science & Technology 41(12): 4447-4453.
[41]Daneshvar, N., D. Salari, A. Niaei, M. H. Rasoulifard and A. R. Khataee (2005). "Immobilization of TiO2 Nanopowder on Glass Beads for the Photocatalytic Decolorization of an Azo Dye C.I. Direct Red 23." Journal of Environmental Science and Health, Part A 40(8): 1605-1617.
[42]de Freitas, A. M., C. Sirtori, C. A. Lenz and P. G. Peralta Zamora (2013). "Microcystin-LR degradation by solar photo-Fenton, UV-A/photo-Fenton and UV-C/H2O2: a comparative study." Photochem Photobiol Sci 12(4): 696-702.
[43]De Laat, J. and H. Gallard (1999). "Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling." Environmental Science & Technology 33(16): 2726-2732.
[44]del Giorgio, P. A., Y. Prairie and D. Bird (1997). "Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry." Microbial ecology 34(2): 144-154.
[45]Diaper, J., K. Tither and C. Edwards (1992). "Rapid assessment of bacterial viability by flow cytometry." Applied Microbiology and Biotechnology 38(2): 268-272.
[46]Ding, J., H. Shi, T. Timmons and C. Adams (2010). "Release and removal of microcystins from microcystis during oxidative-, physical-, and UV-based disinfection." Journal of Environmental Engineering 136(1): 2-11.
[47]Dorsey, J., C. M. Yentsch, S. Mayo and C. McKenna (1989). "Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae." Cytometry Part A 10(5): 622-628.
[48]Drábková, M., W. Admiraal and B. Maršálek (2007). "Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms." Environmental science & technology 41(1): 309-314.
[49]Elovitz, M. S. and U. von Gunten (1999). "Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The RctConcept." Ozone: Science & Engineering 21(3): 239-260.
[50]Fan, J., L. Ho, P. Hobson and J. Brookes (2013). "Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity." Water Res 47(14): 5153-5164.
[51]Fan, J., L. Rao, Y. T. Chiu and T. F. Lin (2016). "Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis." Water Res 102: 394-404.
[52]Fotiou, T., T. Triantis, T. Kaloudis and A. Hiskia (2015). "Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products." Chemosphere 119 Suppl: S89-94.
[53]Fotiou, T., T. M. Triantis, T. Kaloudis, K. E. O'Shea, D. D. Dionysiou and A. Hiskia (2016). "Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2." Water Res 90: 52-61.
[54]Fotiou, T., T. M. Triantis, T. Kaloudis, E. Papaconstantinou and A. Hiskia (2014). "Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: Intermediates and degradation pathways." Journal of Photochemistry and Photobiology A: Chemistry 286: 1-9.
[55]Funari, E. and E. Testai (2008). "Human health risk assessment related to cyanotoxins exposure." Critical reviews in toxicology 38(2): 97-125.
[56]Garcia-Villada, L., M. Rico, M. M. Altamirano, L. Sanchez-Martin, V. Lopez-Rodas and E. Costas (2004). "Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide." Water Res 38(8): 2207-2213.
[57]Glaze, W. H., J.-W. Kang and D. H. Chapin (1987). "The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation."
[58]Gong, A. S., C. A. Lanzl, D. M. Cwiertny and S. L. Walker (2012). "Lack of influence of extracellular polymeric substances (EPS) level on hydroxyl radical mediated disinfection of Escherichia coli." Environ Sci Technol 46(1): 241-249.
[59]Gottschalk, F. and B. Nowack (2011). "The release of engineered nanomaterials to the environment." Journal of Environmental Monitoring 13(5): 1145-1155.
[60]Grosso, D., C. Boissière and M. Faustini (2015). "Thin Film Deposition Techniques." The Sol-Gel Handbook: Synthesis, Characterization and Applications, 3-Volume Set 2.
[61]Gupta, S. M. and M. Tripathi (2012). "A review on the synthesis of TiO2 nanoparticles by solution route." Central European Journal of Chemistry 10(2): 279-294.
[62]Hader, D. P., H. D. Kumar, R. C. Smith and R. C. Worrest (2007). "Effects of solar UV radiation on aquatic ecosystems and interactions with climate change." Photochem Photobiol Sci 6(3): 267-285.
[63]Harke, M. J., M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm, S. A. Wood and H. W. Paerl (2016). "A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp." Harmful Algae 54: 4-20.
[64]Haugland, R. P. (1996). Handbook of Fluorescent Probes and Research Products, Molecular Probes Eugene, OR.
[65]Hirakawa, T. and Y. Nosaka (2002). "Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions." Langmuir 18(8): 3247-3254.
[66]Hislop, K. A. and J. R. Bolton (1999). "The Photochemical generation of hydroxyl radicals in the UV− vis/Ferrioxalate/H2O2 System." Environmental science & technology 33(18): 3119-3126.
[67]Hislop, K. A. and J. R. Bolton (1999). "The Photochemical Generation of Hydroxyl Radicals in the UV−vis/Ferrioxalate/H2O2 System." Environmental Science & Technology 33(18): 3119-3126.
[68]Hitzfeld, B. C., S. J. Höger and D. R. Dietrich (2000). "Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment." Environmental Health Perspectives 108(Suppl 1): 113-122.
[69]Hobbie, J. E., R. J. Daley and S. Jasper (1977). "Use of nuclepore filters for counting bacteria by fluorescence microscopy." Applied and environmental microbiology 33(5): 1225-1228.
[70]Hoffmann, M. R., S. T. Martin, W. Choi and D. W. Bahnemann (1995). "Environmental applications of semiconductor photocatalysis." Chemical reviews 95(1): 69-96.
[71]Hotze, E. M., T. Phenrat and G. V. Lowry (2010). "Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment." Journal of environmental quality 39(6): 1909-1924.
[72]Hou, J., Y. Yang, P. Wang, C. Wang, L. Miao, X. Wang, B. Lv, G. You and Z. Liu (2017). "Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances." Environ Sci Pollut Res Int 24(1): 226-235.
[73]Huber, M. M., S. Canonica, G.-Y. Park and U. von Gunten (2003). "Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes." Environmental Science & Technology 37(5): 1016-1024.
[74]Hummert, C., J. Dahlmann, M. Reichelt and B. Luckas (2001). "Analytical techniques for monitoring harmful cyanobacteria in lakes." Lakes & Reservoirs: Research & Management 6(2): 159-168.
[75]Huo, X., D.-W. Chang, J.-H. Tseng, M. D. Burch and T.-F. Lin (2015). "Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation." Environmental Science & Technology 49(9): 5502-5510.
[76]Huo, X., D. W. Chang, J. H. Tseng, M. D. Burch and T. F. Lin (2015). "Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation." Environ Sci Technol 49(9): 5502-5510.
[77]Jancula, D. and B. Marsalek (2011). "Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms." Chemosphere 85(9): 1415-1422.
[78]Johnson, M. B. and A. K. Criss (2013). "Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells." (79): e50729.
[79]Jones, K. H. and J. A. Senft (1985). "An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide." Journal of Histochemistry & Cytochemistry 33(1): 77-79.
[80]Jung, Y. S., W. T. Lim, J. Y. Park and Y. H. Kim (2009). "Effect of pH on Fenton and Fenton-like oxidation." Environ Technol 30(2): 183-190.
[81]Kansole, M. M. and T.-F. Lin (2017). "Impacts of Hydrogen Peroxide and Copper Sulfate on the Control of Microcystis aeruginosa and MC-LR and the Inhibition of MC-LR Degrading Bacterium Bacillus sp." Water 9(4): 255.
[82]Kasanen, J., M. Suvanto and T. T. Pakkanen (2009). "Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces." Journal of Applied Polymer Science 111(5): 2597-2606.
[83]Kelly, P. J. and R. D. Arnell (2000). "Magnetron sputtering: a review of recent developments and applications." Vacuum 56(3): 159-172.
[84]Kern, W. (2012). Thin film processes II, Academic press.
[85]Kikuchi, H., M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo and P. V. Kamat (2006). "Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method." The Journal of Physical Chemistry B 110(11): 5537-5541.
[86]Kim, D.-S. and Y. Watanabe (1993). "The effect of long wave ultraviolet radiation (UV-A) on the photosynthetic activity of natural population of freshwater phytoplankton." Ecological research 8(2): 225-234.
[87]Kim, S.-C. and D.-K. Lee (2005). "Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water." Microchemical Journal 80(2): 227-232.
[88]Klaine, S. J., P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin and J. R. Lead (2008). "Nanomaterials in the environment: behavior, fate, bioavailability, and effects." Environmental Toxicology and Chemistry 27(9): 1825-1851.
[89]Kumar, S. G. and L. G. Devi (2011). "Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics." The Journal of Physical Chemistry A 115(46): 13211-13241.
[90]Kwan, W. P. and B. M. Voelker (2003). "Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems." Environmental Science & Technology 37(6): 1150-1158.
[91]Lanzilotto, A., L. A. Büldt, H. C. Schmidt, A. Prescimone, O. S. Wenger, E. C. Constable and C. E. Housecroft (2016). "Improved light absorbance does not lead to better DSC performance: studies on a ruthenium porphyrin–terpyridine conjugate." RSC Adv. 6(19): 15370-15381.
[92]Lawton, L. and P. J. Robertson (1999). "Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters." Chemical Society Reviews 28(4): 217-224.
[93]Lawton, L. A., P. K. J. Robertson, B. J. P. A. Cornish and M. Jaspars (1999). "Detoxification of Microcystins (Cyanobacterial Hepatotoxins) Using TiO2 Photocatalytic Oxidation." Environmental Science & Technology 33(5): 771-775.
[94]Lee, S., X. Bi, R. B. Reed, J. F. Ranville, P. Herckes and P. Westerhoff (2014). "Nanoparticle size detection limits by single particle ICP-MS for 40 elements." Environmental science & technology 48(17): 10291-10300.
[95]Lee, S.-Y. and S.-J. Park (2013). "TiO2 photocatalyst for water treatment applications." Journal of Industrial and Engineering Chemistry 19(6): 1761-1769.
[96]Lei, P., F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu and M. Yang (2012). "Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants." J Hazard Mater 227-228: 185-194.
[97]Levard, C., E. M. Hotze, G. V. Lowry and G. E. Brown Jr (2012). "Environmental transformations of silver nanoparticles: impact on stability and toxicity." Environmental science & technology 46(13): 6900-6914.
[98]Li, L., N.-y. Gao, Y. Deng, J.-j. Yao, K.-j. Zhang, H.-j. Li, D.-d. Yin, H.-s. Ou and J.-w. Guo (2009). "Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water." Journal of Zhejiang University-SCIENCE A 10(11): 1660-1669.
[99]Li, L., C. Shao, T. F. Lin, J. Shen, S. Yu, R. Shang, D. Yin, K. Zhang and N. Gao (2014). "Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa." Environ Sci Technol 48(5): 2885-2892.
[100]Li, L., H. Zhang and Q. Huang (2015). "New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge." Scientific Reports 5: 13683.
[101]Li, X., T. Shen, D. Wang, X. Yue, X. Liu, Q. Yang, J. Cao, W. Zheng and G. Zeng (2012). "Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process." Journal of Environmental Sciences 24(2): 269-275.
[102]Li, X., H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li and D. Wu (2009). "Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model." Applied Physics A: Materials Science & Processing 97(2): 341-344.
[103]Liang, C. and H.-W. Su (2009). "Identification of sulfate and hydroxyl radicals in thermally activated persulfate." Industrial & Engineering Chemistry Research 48(11): 5558-5562.
[104]Liang, H. C., X. Z. Li, Y. H. Yang and K. H. Sze (2008). "Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO(2) nanotube films." Chemosphere 73(5): 805-812.
[105]Lin, T.-F., D.-W. Chang, S.-K. Lien, Y.-S. Tseng, Y.-T. Chiu and Y.-S. Wang (2009). "Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants." Journal of Water Supply: Research and Technology—AQUA 58(8): 539.
[106]Ling, Y., J. K. Cooper, Y. Yang, G. Wang, L. Munoz, H. Wang, J. Z. Zhang and Y. Li (2013). "Chemically modified titanium oxide nanostructures for dye-sensitized solar cells." Nano Energy 2(6): 1373-1382.
[107]Linsebigler, A. L., G. Lu and J. T. Yates Jr (1995). "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results." Chemical reviews 95(3): 735-758.
[108]Liu, Y., J. Li, X. Qiu and C. Burda (2007). "Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS)." Journal of Photochemistry and Photobiology A: Chemistry 190(1): 94-100.
[109]Liu, Y., J. Ren, X. Wang and Z. Fan (2016). "Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment." PLoS One 11(6): e0156236.
[110]Lopez, C., E. Jewett, Q. Dortch, B. Walton and H. Hudnell (2008). "Scientific assessment of freshwater harmful algal blooms."
[111] Lu, W.-C., H.-D. Nguyen, C.-Y. Wu, K.-S. Chang and M. Yoshimura (2014). "Modulation of physical and photocatalytic properties of (Cr, N) codoped TiO2 nanorods using soft solution processing." Journal of Applied Physics 115(14): 144305.
[112]Lu, Y., S. Guan, L. Hao and H. Yoshida (2015). "Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application." Coatings 5(3).
[113]Ma, M., R. Liu, H. Liu and J. Qu (2012). "Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation." Journal of Hazardous Materials 217: 279-285.
[114]Mahlambi, M. M., C. J. Ngila and B. B. Mamba (2015). "Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review." Journal of Nanomaterials 2015: 1-29.
[115]Maizels, M. and W. L. Budde (2004). "A LC/MS Method for the Determination of Cyanobacteria Toxins in Water." Analytical Chemistry 76(5): 1342-1351.
[116]Mali, S. S., H. Kim, C. S. Shim, P. S. Patil, J. H. Kim and C. K. Hong (2013). "Surfactant free most probable TiO(2) nanostructures via hydrothermal and its dye sensitized solar cell properties." Sci Rep 3: 3004.
[117]Marie, D., D. Vaulot and F. Partensky (1996). "Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes." Applied and environmental microbiology 62(5): 1649-1655.
[118]Matthijs, H. C., P. M. Visser, B. Reeze, J. Meeuse, P. C. Slot, G. Wijn, R. Talens and J. Huisman (2012). "Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide." Water Res 46(5): 1460-1472.
[119]Maurer-Jones, M. A., I. L. Gunsolus, C. J. Murphy and C. L. Haynes (2013). "Toxicity of engineered nanoparticles in the environment." Anal Chem 85(6): 3036-3049.
[120]Mikula, P., S. Zezulka, D. Jancula and B. Marsalek (2012). "Metabolic activity and membrane integrity changes inMicrocystis aeruginosa– new findings on hydrogen peroxide toxicity in cyanobacteria." European Journal of Phycology 47(3): 195-206.
[121]Moffat, B. D. and T. W. Snell (1995). "Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera)." Ecotoxicology and Environmental Safety 30(1): 47-53.
[122]Montaño, M. D., J. W. Olesik, A. G. Barber, K. Challis and J. F. Ranville (2016). "Single Particle ICP-MS: Advances toward routine analysis of nanomaterials." Analytical and Bioanalytical Chemistry 408(19): 5053-5074.
[123]Neerinck, D. and T. Vink (1996). "Depth profiling of thin ITO films by grazing incidence X-ray diffraction." Thin Solid Films 278(1-2): 12-17.
[124]Newcombe, G., J. House, L. Ho, P. Baker and M. Burch (2010). "Management strategies for cyanobacteria (blue-green algae): a guide for water utilities." Water Quality Research Australia (WQRA), Reserach Report 74.
[125]O’Neil, J. M., T. W. Davis, M. A. Burford and C. J. Gobler (2012). "The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change." Harmful Algae 14: 313-334.
[126]O’Shea, K. E. and D. D. Dionysiou (2012). Advanced oxidation processes for water treatment, ACS Publications.
[127]Ohyama, M., H. Kouzuka and T. Yoko (1997). "Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution." Thin Solid Films 306(1): 78-85.
[128]Oliveros, E., O. Legrini, M. Hohl, T. Müller and A. M. Braun (1997). "Industrial waste water treatment: large scale development of a light-enhanced Fenton reaction." Chemical Engineering and Processing: Process Intensification 36(5): 397-405.
[129]Perera, S. D., R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal and K. J. Balkus Jr (2012). "Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity." Acs Catalysis 2(6): 949-956.
[130]Pi, Y., J. Schumacher and M. Jekel (2005). "The use of para-chlorobenzoic acid (pCBA) as an ozone/hydroxyl radical probe compound." Ozone: Science and Engineering 27(6): 431-436.
[131]Planchon, M., T. Jittawuttipoka, C. Cassier-Chauvat, F. Guyot, A. Gelabert, M. F. Benedetti, F. Chauvat and O. Spalla (2013). "Exopolysaccharides protect Synechocystis against the deleterious effects of titanium dioxide nanoparticles in natural and artificial waters." J Colloid Interface Sci 405: 35-43.
[132]Plotnikova, E., I. Solyanikova, D. Egorova, E. Shumkova and L. Golovleva (2012). "Degradation of 4-chlorobiphenyl and 4-chlorobenzoic acid by the strain Rhodococcus ruber P25." Microbiology (00262617) 81(2).
[133]Pryor, W. A. (1986). "Oxy-radicals and related species: their formation, lifetimes, and reactions." Annual review of Physiology 48(1): 657-667.
[134]Qiao, R.-P., N. Li, X.-H. Qi, Q.-S. Wang and Y.-Y. Zhuang (2005). "Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide." Toxicon 45(6): 745-752.
[135]Rashash, D. M. and D. L. Gallagher (1995). "An evaluation of algal enumeration." Journal-American Water Works Association 87(4): 127-132.
[136]Rattanakul, S. and K. Oguma (2017). "Analysis of Hydroxyl Radicals and Inactivation Mechanisms of Bacteriophage MS2 in Response to a Simultaneous Application of UV and Chlorine." Environ Sci Technol 51(1): 455-462.
[137]Rincón, A.-G. and C. Pulgarin (2006). "Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water." Applied Catalysis B: Environmental 63(3-4): 222-231.
[138]Rippka, R. (1988). [2] Recognition and identification of cyanobacteria. Methods in Enzymology, Academic Press. Volume 167: 28-67.
[139]Ruppert, G., R. Bauer and G. Heisler (1994). "UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction-comparison of advanced oxidation processes for wastewater treatment." Chemosphere 28(8): 1447-1454.
[140]Sahu, N., B. Parija and S. Panigrahi (2009). "Fundamental understanding and modeling of spin coating process: A review." Indian Journal of Physics 83(4): 493-502.
[141]Sclafani, A. and J. Herrmann (1996). "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions." The Journal of Physical Chemistry 100(32): 13655-13661.
[142]Sellers, R. M. (1980). "Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate." Analyst 105(1255): 950-954.
[143]Sen, C., L. Packer and O. Hänninen (2000). Handbook of oxidants and antioxidants in exercise, Elsevier.
[144]Sharma, V. K., T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. O’Shea, A. A. de la Cruz, T. Kaloudis, A. Hiskia and D. D. Dionysiou (2012). "Destruction of microcystins by conventional and advanced oxidation processes: A review." Separation and Purification Technology 91: 3-17.
[145]Shih, Y.-h., C.-m. Zhuang, Y.-H. Peng, C.-h. Lin and Y.-m. Tseng (2012). "The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water." Science of The Total Environment 435-436: 446-452.
[146]Singh, S., H. Mahalingam and P. K. Singh (2013). "Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review." Applied Catalysis A: General 462-463: 178-195.
[147]Spurr, R. A. and H. Myers (1957). "Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer." Analytical Chemistry 29(5): 760-762.
[148]Sun, B., G. Zhou, Y. Zhang, R. Liu and T. Li (2015). "Photocatalytic properties of exposed crystal surface-controlled rutile TiO2 nanorod assembled microspheres." Chemical Engineering Journal 264: 125-133.
[149]Teixeira, M. R. and M. J. Rosa (2006). "Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa." Separation and Purification Technology 52(1): 84-94.
[150]Tong, H., S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye (2012). "Nano-photocatalytic materials: possibilities and challenges." Adv Mater 24(2): 229-251.
[151]Torrey, J. D., T. L. Kirschling and L. F. Greenlee (2015). "Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements." J Res Natl Inst Stand Technol 120: 1-10.
[152]Triantis, T. M., T. Fotiou, T. Kaloudis, A. G. Kontos, P. Falaras, D. D. Dionysiou, M. Pelaez and A. Hiskia (2012). "Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2." J Hazard Mater 211-212: 196-202.
[153]USEPA (2001). Creating a Cyanotoxin Target List for the Unregulated Contaminant Monitoring Rule.
[154]van Apeldoorn, M. E., H. P. van Egmond, G. J. Speijers and G. J. Bakker (2007). "Toxins of cyanobacteria." Mol Nutr Food Res 51(1): 7-60.
[155]Vasconcelos, V., K. Sivonen, W. Evans, W. Carmichael and M. Namikoshi (1996). "Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters." Water Research 30(10): 2377-2384.
[156]Wang, S. (2008). "A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater." Dyes and Pigments 76(3): 714-720.
[157]Wang, X., X. Wang, J. Zhao, J. Song, J. Wang, R. Ma and J. Ma (2017). "Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO 2 /expanded perlite floating composites." Chemical Engineering Journal 320: 253-263.
[158]Wang, Y., Y. He, Q. Lai and M. Fan (2014). "Review of the progress in preparing nano TiO2: an important environmental engineering material." J Environ Sci (China) 26(11): 2139-2177.
[159]Wang, Y., L. Zhang, K. Deng, X. Chen and Z. Zou (2007). "Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures." The Journal of Physical Chemistry C 111(6): 2709-2714.
[160]Watson, H. E. (1908). "A note on the variation of the rate of disinfection with change in the concentration of the disinfectant." Journal of Hygiene 8(4): 536-542.
[161]Weir, A., P. Westerhoff, L. Fabricius, K. Hristovski and N. von Goetz (2012). "Titanium Dioxide Nanoparticles in Food and Personal Care Products." Environmental Science & Technology 46(4): 2242-2250.
[162]Wen, G., H. Zhu, Y. Wei, T. Huang and J. Ma (2017). "Formation of assimilable organic carbon during the oxidation of water containing Microcystis aeruginosa by ozone and an advanced oxidation process using ozone/hydrogen peroxide." Chemical Engineering Journal 307: 364-371.
[163]Wert, E. C., M. M. Dong and F. L. Rosario-Ortiz (2013). "Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes." Water Res 47(11): 3752-3761.
[164]Westrick, J. A., D. C. Szlag, B. J. Southwell and J. Sinclair (2010). "A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment." Anal Bioanal Chem 397(5): 1705-1714.
[165]Whipple and G. M. Fair, MC (1927). "Microscopy of drinking water." Ed. J. Wiley & Sons. New York.
[166]WHO (2003). "Cyanobacterial toxins: microcystin-LR in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. Geneva, Switzerland." World Health Organization, 2nd ed. Geneva.
[167]WHO (2008). Guidelines for Drinking-water Quality: incorporating 1st and 2nd addenda, Vol.1, Recommendations. – 3rd ed.
[168]Woan, K., G. Pyrgiotakis and W. Sigmund (2009). "Photocatalytic carbon‐nanotube–TiO2 composites." Advanced Materials 21(21): 2233-2239.
[169]Wörmer, L., M. Huerta-Fontela, S. Cirés, D. Carrasco and A. Quesada (2010). "Natural Photodegradation of the Cyanobacterial Toxins Microcystin and Cylindrospermopsin." Environmental Science & Technology 44(8): 3002-3007.
[170]Wu, W.-Q., B.-X. Lei, H.-S. Rao, Y.-F. Xu, Y.-F. Wang, C.-Y. Su and D.-B. Kuang (2013). "Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells." Scientific reports 3: 1352.
[171]Xu, Y., L. Zhu, J. Shi, S. Lv, X. Xu, J. Xiao, J. Dong, H. Wu, Y. Luo and D. Li (2015). "Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xCl x Derived from Two-Step Spin Coating Method." ACS applied materials & interfaces 7(4): 2242-2248.
[172]Zamyadi, A., Y. Fan, R. I. Daly and M. Prevost (2013). "Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation." Water Res 47(3): 1080-1090.
[173]Zhang, J., Q. Xu, Z. Feng, M. Li and C. Li (2008). "Importance of the relationship between surface phases and photocatalytic activity of TiO2." Angewandte Chemie International Edition 47(9): 1766-1769.
[174]Zheng, J. Y., S. H. Bao, Y. Guo and P. Jin (2014). "Anatase TiO(2) films with dominant {001} facets fabricated by direct-current reactive magnetron sputtering at room temperature: oxygen defects and enhanced visible-light photocatalytic behaviors." ACS Appl Mater Interfaces 6(8): 5940-5946.
[175]Zhou, S., Y. Shao, N. Gao, Y. Deng, J. Qiao, H. Ou and J. Deng (2013). "Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa." Sci Total Environ 463-464: 111-119.
[176]Zurawell, R. W., H. Chen, J. M. Burke and E. E. Prepas (2005). "Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments." J Toxicol Environ Health B Crit Rev 8(1): 1-37.
[177]周仕涵 (2010). 以S、N改質TiO2光觸媒在可見光下處理1,2-二氯乙烷之研究, 成功大學.
[178]張哲維 (2015). 過氧化氫與二氧化鈦在可見光催化系統下對微囊藻之破壞及其毒素釋出降解之研究, 成功大學.
[179]張祐豪 (2009). "低成本染料敏式太陽能電池之二氧化鈦光電極研究." 成功大學環境工程學系學位論文: 1-109.
[180]張德威 (2013). 飲用水源中有害藻體及代謝物監測與破壞技術之研究, 成功大學.
[181]許明琮 (2003). "射頻磁控濺鍍法製備 TiO2 及 TiO2-XNX 光觸媒薄膜之研究." 碩士學位論文, 國立雲林科技大學化學工程研究所: 8-9.
[182]陳文雄 (2003). "深紫外光電材料及奈米低維結構之摻雜活化機制的 X 光吸收光譜研究 (II)."
[183]陳曉國, 肖邦定, 徐小清 and 董欣楊 (2004). "不同波段紫外光對微囊藻毒素光降解的影響." 中國環境科學 24(1): 1-5.
[184]游惇蓉 (2014). 過氧化氫在光催化系統下對魚腥藻之破壞及其代謝物釋出降解之研究, 成功大學.
[185]黃暐庭 (2016). 二氧化鈦搭配過氧化氫在UV-LED系統下對微囊藻細胞及毒素破壞之研究, 成功大學.
[186]董俊興 (2001). 經摻雜之二氧化鈦觸媒膜光分解性質之研究, 國立中央大學圖書館.
[187]鄭信民 and 林麗娟 (2002). "X 光繞射應用簡介." 工業材料雜誌 (181), 頁: 100-108.