簡易檢索 / 詳目顯示

研究生: 呂宥萱
Lu, Yu-Hsuan
論文名稱: 氮化物化合物半導體紫外光發光二極體之研製及特性探討
Fabricating and Investigating the Characteristics of Nitride-Based Ultraviolet Light-Emitting Diodes
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 168
中文關鍵詞: 發光二極體三五族化合物半導體紫外光異質磊晶橫向成長極化圖形化基板
外文關鍵詞: light-emitting diodes, III-V compound semiconductor, ultraviolet, heteroepitaxial lateral overgrowth, polarization, patterned substrate
相關次數: 點閱:130下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應紫外光應用的需求,氮化物發光二極體(light-emitting diodes)的效率需要進一步提升,但是氮化物材料系統於紫外光發光區的材料特性讓其在元件效率的提升上尤其困難。本論文主要為應用能帶工程技術、化學蝕刻與粗化/圖案化基板來改善氮化物紫外光發光二極體之特性。論文首先針對長波長區段之紫外光發光二極體進行探討,接著為了實現短波長區段之紫外光發光二極體,先針對成長高品質氮化鋁/藍寶石基板作研究。研究包含:四元氮化物材料應用、晶粒背面粗化、電子阻障層之設計、選擇性參雜、及圖案化基板之影響。本論文透過有機金屬化學氣相沉積法來成長紫外光發光二極體磊晶層及元件,並藉由理論模擬(SiLENSe, STR Crop.)來探討這些物理現象,且經由結構上的改善來降低諸如極化場等的不利因素影響。
    利用對氮化鎵基板背面粗化可有效提升元件之光取出效率。氮化鎵基板的穿透率受蝕刻時間影響而有所不同,同時,穿透率亦和波長有極大關係。應用背面粗化之氮化鎵基板,藍光及近紫外光發光二極體之發光強度較成長於未粗化氮化鎵基板的發光二極體分別提升21%及94%。其中,光取出效率在蝕刻之六角錐長寬較小且密度較高時為最佳,因此,元件之發光強度在以短蝕刻時間(一分鐘)為最佳,在20毫安培電流注入下可得到107%的提升。
    降低極化場的影響可提升元件的內部量子效率(internal quantum efficiency)。我們藉由使用晶格常數匹配之四元氮化物材料及漸變式電子阻障層來降低極化場的影響。在成長四元化合物材料時,三甲基鎵(trimethylgallium, TMGa)的流量會影響銦和鋁的融入率;當傳統氮化鎵能障為In0.035Al0.089Ga0.876N四元氮化物取代時,光輸出功率在100毫安培電流注入下約提升15.9%。第二部分,使用鋁含量漸近式電子阻障層時,紫外光元件發光強度在350毫安培電流注入下提升1.87倍。透過對電子阻障層巧妙的設計,可以提高對電子的阻擋程度並提升電洞注入能力。第三部分,選擇性能障參雜會影響載子濃度分佈,並降低非輻射複合程度,此改善之情形在高缺陷密度下尤其顯著。
    使用異質接面橫向磊晶成長法可有效降低氮化鋁基板之缺陷密度。在改變藍寶石基板上之氮化鋁圖案化基板的形狀時,氮化鋁的結晶品質、表面形貌、接和時間及臨界厚度皆會受影響。

    Adopting nitride-based ultraviolet light-emitting diodes (UV LEDs) to achieve light output efficiency depends on pushing efficiency toward practicable levels. However, the material properties of the III-nitride material system have made further progress toward shorter wavelength increasingly difficult. This dissertation mainly aims to improve the efficiency of nitride-based UV LEDs by using band engineering techniques, the chemical etching process, and patterned substrates. In the beginning we focused our attention on long wavelength UV LEDs, and then made the effort to grow high quality AlN/sapphire templates for short wavelength UV LEDs. Investigating light output power (LOP) efficiency improvement techniques includes employing a quaternary material, backside roughening of chip, electron blocking layer (EBL) design, selective doping, and different patterns of the AlN/sapphire form. Light emitters are fabricated using the metalorganic chemical vapor deposition (MOCVD) system. Physical phenomena are studied through the design of device structures using numerical simulations (SiLENSe, STR Crop.). The influence of detrimental effects, such as the polarization effect, is considerably reduced by using these redesigned structures.
    An increase in light extraction efficiency is obtained by using a roughened backside GaN substrate. The transmittance of the GaN substrate is affected by etching time and strongly depends on the wavelength. When the roughened backside structure is used, the output powers of the blue and near-UV LEDs increase by 21% and 94% compared with LEDs, which are fabricated without the wet etching process. Light passes through the shortened vertical length and the high density of hexagonal pyramids can be effectively extracted. Hence, the output power of near-UV LED with a short etching time (1 min) increases by 107% at 20 mA.
    An increase in internal quantum efficiency is obtained by reducing the effect of the polarization fields. These fields are approached by employing the lattice match quaternary material and the gradient Al composition EBL. Regarding the growth of the quaternary material, incorporating In and Al is influenced by the trimethylgallium (TMGa) flow rate. Accordingly, an enhancement of 15.9% in LOP is obtained from the measurements at 100 mA when the GaN barrier layers are replaced with In0.035Al0.089Ga0.876N barier layers. In the second part, the LOP of UV LEDs with gradient Al composition is 1.87 times higher than that of the conventional structure at 350 mA. The delicately designed EBLs capably perform the electron blocking function and eliminate the incidental drawback of obstructing the hole injection caused by the nature of the large polarization field at the c-plane nitride heterojunction. In the third part, selective doping provides hints that the dopant in the barriers can modify carrier concentration and change the nonradiative recombination rate, particulary under high dislocation condition.
    The threading dislocation density of the AlN template is reduced via the epitaxial lateral overgrowth growth (ELOG) process. A lateral epitaxial overgrowth leads to a remarkable reduction in threading dislocation. A variation of differently patterned structures indicates that, the form of the pattern affects the crystal quality, surface morphology, coalescence time, and critical thickness of AlN before cracking.

    Abstract (in Chinese)............- i - Abstract (in English)............- iii - Acknowledgement (in Chinese)...........- vi - Contents..............- viii - Table Captions - xi - Figure Captions - xii - Chapter 1 Background and Motivation - 1 - 1.1 Introduction and Motivation - 1 - 1.2 Material Property of the III-Nitride System - 2 - 1.2.1 Crystal Structure - 2 - 1.2.2 Substrate - 3 - 1.2.3 Defect and Doping - 5 - 1.2.4 Polarization Effect - 7 - 1.3 Solid State Ultraviolet Lighting - 9 - 1.3.1 Evolution of LEDs - 9 - 1.3.2 Status review of UV LEDs - 12 - 1.4 Current Issues Remaining - 19 - 1.4.1 Utilizing Quaternary Material - 19 - 1.4.2 Increasing Light Extraction - 20 - 1.4.3 Manipulating Polarization Effect - 21 - 1.4.4 Effect of Doping - 22 - 1.4.5 Lack of AlN Substrates - 23 - Chapter 2 Utilize Quaternary InAlGaN Material for Efficiency Improvement in Near- UV LEDs....- 35 - 2.1 Introduction - 35 - 2.2 Growth of InAlGaN Material - 36 - 2.3 Application of InAlGaN in Near-UV LEDs - 38 - 2.3.1 Thickness for Forming InAlGaN Barrier Layer - 38 - 2.3.2 Influence of the Composition on (In)(Al)GaN Barrier Layer for Near-UV LEDs - 42 - 2.4 Summary - 45 - Chapter 3 LEDs on a Roughened Backside GaN Substrate by a Chemical Wet-Etching Process - 57 - 3.1 Introduction - 57 - 3.2 Procedure and Characteristics of Chemical Wet-Etching of GaN Substrate - 58 - 3.3 Application of Wet-Etching Process in LEDs - 60 - 3.3.1 405 nm Near-Ultraviolet and 450 nm Blue LEDs on Roughened Backside GaN Substrate - 60 - 3.3.2 Influence of Etching Time on 405 nm Near-UV LED - 62 - 3.4 Summary - 65 - Chapter 4 Manipulating Polarization Effect in Electron Blocking Layer (EBL) of UVA LEDs - 76 - 4.1 Motivation - 76 - 4.2 Design of Polarization Engineering EBL - 77 - 4.2.1 Structure Features of Redesign EBL - 77 - 4.2.2 Manipulating Polarization Effect of EBL - 78 - 4.2.3 Theoretical Study of Polarization Engineering EBL - 82 - 4.3 Summary - 87 - Chapter 5 Effect of Si-doped in Barrier Layer - 102 - 5.1 Introduction - 102 - 5.2 Effect of AlGaN Si-Doped Barrier Layer on Optical Properties - 103 - 5.2.1 Experimental Details - 103 - 5.2.2 Results and Discussion - 104 - 5.3 Selective Si-doped in Barrier Layer of 365 nm UVA LEDs - 107 - 5.3.1 Experimental Details - 107 - 5.3.2 Results and Discussion - 108 - 5.4 Summary - 111 - Chapter 6 MOCVD Growth of AlN - 121 - 6.1 Motivation - 121 - 6.2 Dislocation Reduction by Epitaxial Lateral Overgrowth Growth (ELOG) - 121 - 6.2.1 Stripe Pattern in [11 ̅00] and [112 ̅0] Directions - 121 - 6.2.2 Influence of Sapphire Substrate Miscut Orientation - 123 - 6.2.3 Summary - 125 - 6.3 Regrowth AlN on Different Pattern Templates - 125 - 6.3.1 Experimental Details - 125 - 6.3.2 Results and Discussion - 126 - 6.4 Summary - 128 - Chapter 7 Conclusions and Future Prospects - 141 - 7.1 Conclusions - 141 - 7.2 Future Prospects - 144 - References. - 148 - Publication List.....- 165 - Vita.. - 168 -

    [1] A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics, vol. 2, pp. 77-84, 2008.
    [2] Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 441, pp. 325-328, 2006.
    [3] M. Kneissl, T. Kolbe, M. Würtele, and E. Hoa, “Decelopment of UV-LED disinfection,” TECHNEAU, 2010.
    [4] Morison W L 1991 Phototherapy and Photochemotherapy of Skin Disease 2nd edn (New York: Raven Press).
    [5] G. Tamulaitis, “Ultraviolet Light Emitting Diodes,” Lithuanian Journal of Physics, Vol. 51, pp. 177–193, 2011
    [6] M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes – UV LEDs – for water disinfection,” Water Research, vol. 45, pp. 1481-1489, 2011.
    [7] V. Rawat, D. N. Zakharov, E. A. Stach, and T. D. Sands, “Pseudomorphic stabilization of rocksalt GaN in TiN/GaN multilayers and superlattices,” Phys. Rev. B, vol. 80, pp. 024114-1–024114-5, 2009.
    [8] J. Piprek, “Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation”, San Diego: Academic Press, 2003, pp. 13–48.
    [9] M. J. Paisley, Z. Sitar, J. B. Posthill, and R. F. Davis, “Growth of cubic phase gallium nitride by modified molecular‐beam epitaxy,” J. Voc. Sci. Technol. A, vol7, pp. 701-705, 1989.
    [10] T. Takayama, M. Yuri, K. Itoh, and J. S. Harris Jr. , “Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model,” J. Appl. Phys., vol. 90, pp. 2358–2369, 2001.
    [11] S. Nakamura, S. Pearton, and G. Fasol, “The blue laser diode: the complete story”, Springer, 2000.
    [12] B. Gil, “Group III Nitride Semiconductor Compounds”, Oxford, New York, 1998.
    [13] J. I. Pankove, S. Bloom, and G. Harbeke, “Optical properties of GaN,” RCA Rev., vol. 36, pp. 163-176, 1975.
    [14] R. C. Powell, N.‐E. Lee, Y.‐W. Kim, and J. E. Greene, “Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties,” J. Appl. Phys., Vol. 73, pp. 189-204, 1993.
    [15] O. Ambacher, “Growth and applications of group III-nitrides,” J. Phys. D: Appl. Phys., vol. 31, pp. 2653–2710, 1998.
    [16] L. Liu and J.H. Edgar, “Substrates for gallium nitride epitaxy,” Mat Sci Eng R., vol. 37, pp. 61–127, 2002.
    [17] W. A. Melton, J. I. Pankove, “GaN growth on sapphire,” J. Cryst. Growth, vol. 178, pp. 168–173, 1997.
    [18] H. Morkoç, “Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth,” John Wiley & Sons, 2009.
    [19] K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, “Observation of native Ga vacancies in GaN by positron annihilation,” Phys. Rev. Lett., vol. 79, pp. 3030-3033, 1997.
    [20] A. F. Wright, “Substitutional and interstitial carbon in wurtzite GaN,” J. Appl. Phys., vol. 92, pp. 2575-2585, 2002.
    [21] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., vol. 76, pp. 3421-3423, 2000.
    [22] C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B, vol. 57, pp. R15052-R15055, 1998.
    [23] J. E. Northrup, J. Neugebauer, and L. T. Romano, “Inversion domain and stacking mismatch boundaries in GaN,” Phys. Rev. Lett., vol. 77, pp. 103-106, 1996.
    [24] T. Wang, T. Shirahama, H. B. Sun, H. X. Wang, J. Bai, S. Sakai, and H. Misawa, “Influence of buffer layer and growth temperature on the properties of an undoped GaN layer grown on sapphire substrate by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 76, pp. 2220-2222, 2000.
    [25] G. Y. Zhang, Y. Z. Tong, Z. J. Yang, S. X. Jin, J. Li, and Z. Z. Gan, “Relationship of background carrier concentration and defects in GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 71, pp. 3376-3378, 1997.
    [26] T. Kinoshita, T. Obata, H. Yanagi, and S. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett., vol. 102, pp. 012105-1–012105-3, 2013.
    [27] Q. Y. Xie, W. M. Xie, J. L. Wang, H. P. Zhu, J. H. Yang, L. Sun, and X. S. Wu, “Detecting p-type conduction in Ba-doped InN,” Appl. Phys. Lett., vol. 102, pp. 042109-1–042109-3, 2013.
    [28] H. Wang and A.-B. Chen, “Calculation of shallow donor levels in GaN,” J. Appl. Phys., vol. 87, pp. 7859-7863, 2000.
    [29] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 69, pp. 503-505, 1996.
    [30] J. Neugebauer and C. G. Van de Walle, “Chemical trends for acceptor impurities in GaN,” J. Appl. Phys., vol. 85, pp. 3003-3005, 1999.
    [31] D. V. Lang, “Deeplevel transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol. 45, pp. 3023-3032, 1974.
    [32] P. Bogusławski and J. Bernholc, “Doping properties of C, Si, and Ge impurities in GaN and AlN,” Phys. Rev. B, vol. 56, pp. 9496, 1997.
    [33] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, pp. R10024-R10027, 1997.
    [34] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs-an overview of device operation and applications,” Proc. IEEE, vol. 90, pp. 1022-1031, 2002.
    [35] V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B, vol. 60, pp. 8849-8858, 1999.
    [36] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter, vol. 14, pp. 3399-3434, 2002.
    [37] R. D. King-Smith and D. Vanderbilt, “Theory of polarization of crystalline solids,” Phys. Rev. B, vol. 47, pp. 1651-1654, 1993.
    [38] J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev., vol. 7, pp. 408-421, 2013.
    [39] H. J. Round, “A note on carborundum,” Electrical World, vol. 19, pp. 309-312, 1907.
    [40] H. Welker, “On new semiconducting compounds,” Zeitschrift fuer Naturforschung, vol. 7a, pp. 744-749, 1952.
    [41] H. Welker, “On new semiconducting compounds II,” Zeitschrift fuer Naturforschung, vol. 8a, pp. 248-251, 1953.
    [42] H. C. Wang, “Investigation and Fabrication of AlGaInP and InGaN-based Light Emitting Diodes,” Dissertation for Doctor of Philosophy, 2004.
    [43] R. Braunstein, “Radiative Transitions in Semiconductors,” Phys. Rev, vol. 99, pp. 1892-1893, 1955.
    [44] Jr. N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xP x) junctions,” Appl. Phys. Lett., vol. 1, pp. 82, 1962.
    [45] W. O. Groves, A. H. Herzog, and M. G. Craford, “The effect of nitrogen doping on GaAs1-xPx electroluminescent diodes,” Appl. Phys. Lett., vol. 19, pp. 184, 1971.
    [46] W. O. Groves, and A. S. Epstein, “Epitaxial deposition of III-V compounds containing isoelectronic impurities,” US Patent 4,001,056 issued Jan. 4, 1977.
    [47] H. Rupprecht, J. M. Woodall, and G. D. Petit, “Efficient visible electroluminescence at 300 K from Ga1-xAlxAs p-n junctions grown by liquid-phase epitaxy,” Appl. Phys. Lett., vol. 11, pp. 81-83, 1967.
    [48] J. Nishizawa, K. Suto, and T. Teshima, “Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions,” J. Appl. Phys. vol. 48, pp. 3484-3495, 1977.
    [49] H. Ishiguro, K. Sawa, S. Nagao, H. Yamanaka, and S. Koike,” High efficient GaAlAs light emitting diodes of 660 nm with a double heterostructure on a GaAlAs substrate,” Appl. Phys. Lett., vol. 43, pp. 1034-1036, 1983.
    [50] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterosturcture visible lasers,” Electron. Lett., vol. 21, pp. 931, 1985.
    [51] K. Itaya, M. Ishikawa, and Y. Uematsu, “636 nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes,” Electron. Lett., vol. 26, pp. 839, 1990.
    [52] T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys., vol. 95, pp. 2203-2216, 2004.
    [53] E. F. Schubert, “Light Emitting Diodes and Solid-state Lighting,” handbook.
    [54] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990.
    [55] F. A. Kish F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer bonded transparent substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
    [56] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
    [57] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Luminescence, vol. 4, pp. 63–66, 1971.
    [58] P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates,” J. Appl. Phys., vol. 75, pp. 4515-4519, 1994.
    [59] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
    [60] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn J. Appl. Phys., Vol. 30, pp. L1705–L1707, 1991.
    [61] S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor,” U.S. Patent 5,306,662, Apr. 26, 1994.
    [62] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
    [63] S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L457-L459, 1992.
    [64] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Enmitting Diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332-L1335, 1995.
    [65] K. H. Huang and T. P. Chen, “Light-emitting diode structure,” U.S. Patent 5,661,742, Aug. 26, 1997.
    [66] Tohru Oka and Tomohiro Nozawa, Power, vol. 29, pp. 668-670, 2008.
    [67] Y. Sun, Y. H. Cho, H. M. Kim and T. W. Kang, “High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays,” Appl. Phys. Lett., vol. 87, pp. 093115, 2005.
    [68] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, pp. 2248-2250, 2002.
    [69] A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett., vol. 71, pp. 2259-2261, 1997.
    [70] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L 1431-L1433, 2002.
    [71] T. P. Chen, T. C. Hsu, C. Y. Luo, M. C. Hsu, and T. X. Lee, “Improvement in Light Extraction Efficiency of High Brightness InGaN-Based Light Emitting Diodes,” Proc. SPIE, vol. 7216, pp. 1-10, 2009.
    [72] H. Hirayama, N. Noguchi, S. Fujikawa, J. Norimatsu, N. Kamata, T. Takano, K. Tsubaki, “222-282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template,” Proc. of SPIE, Vol. 7216, pp. 721621-1–721621-14, 2009.
    [73] M. Razeghi and M. Henini, “Optoelectronic devices: III-nitrides”, Elsevier, Oxford, 2004.
    [74] S. Nakamura, S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes”, CRC Press, 2000.
    [75] I. Akasaki, H. Amano, K. Itoh, N. Koide, and K. Manabe, “GaN-based UV/blue light emitting devices,” Inst. Phys. Conf. Ser., vol. 129, pp. 851–856, 1992.
    [76] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, “AlGaN/GaN quantum well ultraviolet light emitting diodes,” Appl. Phys. Lett., vol. 73, pp. 1688-1690, 1998.
    [77] J. Han and M.H. Crawford, “MOCVD growth of AlGaN UV LEDs,” Proc. of SPIE, Vol. 3419, pp. 46-50, 1998.
    [78] A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi, and A. Hirata, “Room-temperature operation at 333 nm of Al0.03Ga0.97N/ Al0.25Ga0.75N quantum-well light-emitting diodes with Mg-doped superlattice layers,” Appl. Phys. Lett., vol. 77, pp. 175-177, 2000.
    [79] T. Nishida, H. Saito, and N. Kobayashi, “Submilliwatt operation of AlGaN-based ultraviolet light-emitting diode using short-period alloy superlattice,” Appl. Phys. Lett., vol. 78, pp. 399-400, 2001.
    [80] Y. Taniyasu1, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 411, pp. 325-328, 2006.
    [81] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol., vol. 26, pp. 014036, 2011.
    [82] D. Morita, M. Samo, M. Yamamoto, T. Murayama, S. Nagahama, and T. Mukai, “High Output Power 365nm Ultraviolet Light Emitting Diode of GaN-Free Structure,” Jpn. J. Appl. Phys., vol. 41, pp. L 1434-L1436, 2002.
    [83] V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Yang, G. Simin, and M. A. Khan, “Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells,” Appl. Phys. Lett., vol. 79, pp. 4240-4242, 2001.
    [84] A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, E. Kuokstis, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, and M. A. Khan, “Low-temperature operation of AlGaN single-quantum-well light-emitting diodes with deep ultraviolet emission at 285 nm,” Appl. Phys. Lett., vol. 81, pp. 2938-2940, 2002.
    [85] V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. A. Khan, G. Tamulaitis, A Sereika, I. Yilmaz, and M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285 nm,” Appl. Phys. Lett., vol. 81, pp. 3666-3668, 2002.
    [86] A. Chitnis, J. P. Zhang, V. Adivarahan, M. Shatalov, S. Wu, R. Pachipulusu, V. Mandavilli, and M. A. Khan, “Improved performance of 325-nm emission AlGaN ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 82, pp. 2565-2567, 2003.
    [87] W. H. Sun, J. P. Zhang, V. Adivarahan, A Chitnis, M. Shatalov, S. Wu, V. Mandavilli, J. W. Yang, and M. A. Khan, “AlGaN-based 280nm light-emitting diodes with continuous wave powers in excess of 1.5mW,” Appl. Phys. Lett., vol. 85, pp. 2175-2177, 2004.
    [88] V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. A. Khan, “250 nm AlGaN light-emitting diodes,” Appl. Phys. Lett., vol. 85, pp. 2175-2177, 2004.
    [89] V. Adivarahan, S. Wu, W. H. Sun, V. Mandavilli, M. S. Shatalov, G. Simin, J. W. Yang, H. P. Maruska, and M. A. Khan, “High-power deep ultraviolet light-emitting diodes basedon a micro-pixel design s,” Appl. Phys. Lett., vol. 85, pp. 1838-1840, 2004.
    [90] V. Adivarahan, S. Wu, J. P. Zhang, A. Chitnis, M. Shatalov, V. Mandavilli, R. Gaska, and M. A. Khan, “High-efficiency 269 nm emission deep ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 4762-4764, 2004.
    [91] A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, “4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 83, pp. 4701-4703, 2003.
    [92] A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, , “Growth of deep-UV light-emitting diodes by metalorganic chemical vapor deposition,” Proc. SPIE, vol. 5359, pp. 400414, 2004.
    [93] K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett., vol. 84, pp. 1046-1048, 2004.
    [94] C. Q. Chen, J. P. Zhang, M. E. Gaevski, H. M. Wang, W. H. Sun, R. S. Q. Fareed, J. W. Yang, and M. A. Khan, “Post-growth p-type doping enhancement for ZnSe-based lasers using a Li3N interlayer,” Appl. Phys. Lett., vol. 81, pp. 4916-8918, 2002.
    [95] H. Wang, J. P. Zhang, C. Q. Chen, Q. Fareed, J. W. Yang, and M. A. Khan, “AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire,” Appl. Phys. Lett., vol. 81, pp. 604-606, 2002.
    [96] G. Tamulaitis, I. Yilmaz, M. S. Shur, Q. Fareed, R. Gaska, and M. A. Khan, “Photoluminescence of AlGaN grown on bulk AlN substrates,” Appl. Phys. Lett., vol. 85, pp. 206-208, 2004.
    [97] C.-Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)” Appl. Phys. Lett., vol. 102, pp. 211110-1–211110-4, 2013.
    [98] Y. Zhang, S. Gautier, C.-Y. C., E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, Y. Bai, and M. Razeghi, “Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111) ” Appl. Phys. Lett., vol. 102, pp. 011106-1–011106-5, 2013.
    [99] T. N. Oder, K. H. Kim, J. Y. Lin and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes” Appl. Phys. Lett., vol. 84, pp. 466–468, 2004.
    [100] J. Shakya, K. H. Kim, J. Y. Lin and H. X. Jiang, “Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes” Appl. Phys. Lett., vol. 85, pp. 142–144, 2004.
    [101] T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN” Appl. Phys. Lett., vol. 79, pp. 711–712, 2004.
    [102] T. Nishida, T. Ban, H. Saito, N. Kobayashi, and T. Makimoto, “High power extraction of 340-350 nm UV-LEDs”Proc. SPIE, vol. 5359, pp. 387-399, 2004.
    [103] M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density AlxGa1-xN,” phys. stat. sol. (a), vol. 188, pp. 117-120, 2001.
    [104] M. Iwaya, S. Takanami, A. Miyazaki, Y. Watanabe, S. Kamiyama, H. Amano, and I. Akasaki, “High-Power UV-Light-Emitting Diode on Sapphire,” Jpn. J. Appl. Phys., vol. 42, pp. 400-403, 2003.
    [105] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 52, pp. 100209-1–100209-10, 2014.
    [106] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, and Y.Aoyagi, “Efficient 230–280 nm emission from high-Al-content AlGaN-based multiquantum wells,” Appl. Phys. Lett., vol. 80, pp. 37–39, 2002.
    [107] A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi and A. Hirata, “Room-temperature operation at 333 nm of Al0.03Ga0.97N/ Al0.25Ga0.75N quantum-well light-emitting diodes with Mg-doped superlattice layers,” Appl. Phys. Lett., vol. 77, pp. 175–177, 2000.
    [108] H. Hirayama, A. Kinoshita, T. Yamabi, Y. Enomoto, A. Hirata,T. Araki, Y. Nanishi, and Y. Aoyagi, “Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1−x−yN with In-segregation effect,” Appl. Phys. Lett., vol. 80, pp. 207–209, 2002.
    [109] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm band ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett., vol. 80, pp. 1589–1591 2002.
    [110] H. Hirayama, K. Akita, T. Kyono, T. Nakamura, and K. Ishibashi, “High-Efficiency 352 nm Quaternary InAlGaN-Based Ultraviolet Light-Emitting Diodes Grown on GaN Substrates,” Jpn. J. Appl. Phys., vol. 43, pp. L1241-L1243, 2004.
    [111] H. Hirayama, T. Yatabe, T. Ohashi, and N. Kamata, “Remarkable enhancement of 254-280 nm deep ultraviolet emission from AlGaN quantum wells by using high-quality AlN buffer on sapphire,” phys. stat. sol. (c), vol. 5, pp. 2283-2285, 2008.
    [112] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T.Takano, K. Tsubaki, and N. Kamata, “222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” phys. stat. sol. (a), vol. 206, pp. 1176-1182, 2009.
    [113] H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227 nm AlGaN Light-Emitting Diode with 0.15 mW Output Power Realized using a Thin Quantum Well and AlN Buffer with Reduced Threading Dislocation Density,” Appl. Phys. Express, vol. 1, pp. 051101-1–051101-3, 20108.
    [114] H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked Enhancement in the Efficiency of Deep-Ultraviolet AlGaN Light-Emitting Diodes by Using a Multiquantum-Barrier Electron Blocking Layer,” Appl. Phys. Express, vol. 3, pp. 031002-1–031002-3, 2010.
    [115] N. Maeda and H. Hirayama, “Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer,” phys. stat. sol. (c), vol. 10, pp. 1521-1524, 2013.
    [116] T. Mino, H. Hirayama, T. Takano, N. Noguchi, and K. Tsubaki, “Highly-uniform 260 nm-band AlGaN-based deep-ultraviolet light-emitting diodes developed by 2-inch×3 MOVPE system,” phys. stat. sol. (c), vol. 9, pp. 749-752, 2012.
    [117] M. Shatalov, W. Sun, Y. Bilenko, A. Sattu, X. Hu, J. Deng, J. Yang, M. Shur, C. Moe, M. Wraback, and R. Gaska, “Large Chip High Power Deep Ultraviolet Light-Emitting Diodes,” Appl. Phys. Express, vol. 3, pp. 062101-1–062101-3, 2010.
    [118] J. Mickevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Correlation between carrier localization and efficiency droop in AlGaN epilayers,” Appl. Phys. Lett., vol. 103, pp. 011906-1–011906-4, 2013.
    [119] M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express, vol. 5, pp. 082101-1–082101-3, 2012.
    [120] J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M.l Wraback, and L. J. Schowalter, “270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power,” Appl. Phys. Express, vol. 6, pp. 032101-1–032101-3, 2013.
    [121] T. Kinoshita, T. Obata, Toru Nagashima, H. Yanagi, B. Moody, S. Mita, S.-i. Inoue, Y. Kumagai, A.i Koukitu, and Z. Sitar, “Performance and Reliability of Deep-Ultraviolet Light-Emitting Diodes Fabricated on AlN Substrates Prepared by Hydride Vapor Phase Epitaxy,” Appl. Phys. Express, vol. 6, pp. 092103-1–032101-3, 2012.
    [122] S. Hwang, D. Morgan, A. Kesler, M. Lachab, B. Zhang, A. Heidari, H. Nazir, I. Ahmad, J. Dion, Q. Fareed, V. Adivarahan, M. Islam, and A. Khan, “276 nm Substrate-Free Flip-Chip AlGaN Light-Emitting Diodes,” Appl. Phys. Express, vol. 4, pp. 032102-1–032102-3, 2011.
    [123] A. Fujioka, T. Misaki, T. Murayama, Y. Narukawa, and T. Mukai, “Improvement in Output Power of 280-nm Deep Ultraviolet Light-Emitting Diode by Using AlGaN Multi Quantum Wells,” Appl. Phys. Express, vol. 4, pp. 041001-1–041001-3, 2010.
    [124] J. Heathcote, “Market Overiew of UV-LED Applications: Not a One-Size-Fits-All Approach,” UV-LED Presented by RadTech-The Association for UV & EB Technology, pp.64-69, 2013.
    [125] N. Otsuka, A. Tsujimura, Y. Hasegawa, G. Sugahara, M. Kume, and Y. Ban, “Room Temperature 339 nm Emission from Al0.13Ga0.87N/Al0.10Ga0.90N Double Heterostructure Light-Emitting Diode on Sapphire Substrate,” Jpn. J. Appl. Phys., vol. 39, pp. L445-L448, 2000.
    [126] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Characteristics of InGaN light-emitting diodes on GaN substrates with low threading dislocation densities,” phys. stat. sol. (a), vol. 204, pp. 246-250, 2007.
    [127] T. M. Smeeton, C. J. Humphreys, J. S. Barnard, and M. J. Kappers, “The impact of electron beam damage on the detection of indium-rich localisation centres in InGaN quantum wells using transmission electron microscopy,”J. Mater. Sci., Vol. 41, pp. 2729-2737, 2006.
    [128] M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “Dislocations in AlN Epilayers Grown on Sapphire Substrate by High-Temperature Metal-Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 46, pp. 1458-1462, 2007.
    [129] M. Imura, K. Nakano, G. Narita, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers,” J. Cryst. Growth, vol. 298, pp. 257-260, 2007.
    [130] K. Ban, J.-i. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S.i Kamiyama, I. Akasaki, and H. Amano, “Internal Quantum Efficiency of Whole-Composition-Range AlGaN Multiquantum Wells,” Appl. Phys. Express, vol. 4, pp. 052101-1–052101-3, 2011.
    [131] R. Jain, W. Sun, J. Yang, M. Shatalov, X. Hu, A. Sattu, A. Lunev, J. Deng, I. Shturm, Y. Bilenko, R. Gaska, and M. S. Shur, “Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes,” Appl. Phys. Lett., vol. 93, pp. 051113-1–051113-3, 2008.
    [132] H.i Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “231– 261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire,” Appl. Phys. Lett., vol. 91, pp. 071901-1–071901-3, 2007.
    [133] N. Okada, N. Kato, S. Sato, T. Sumii, T. Nagai, N. Fujimoto, M. Imura, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Maruyama, T. Takagi, T. Noro, A. Bandoh, “Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification,” J. Cryst. Growth, vol. 298, pp. 349-353, 2007.
    [134] J. R. Grandusky, J. A. Smart, M. C. Mendrick, L. J. Schowalter, K. X. Chen, and E. F. Schubert, “Pseudomorphic growth of thick n-type AlxGa1−xN layers on low-defect-density bulk AlN substrates for UV LED applications,” J. Cryst. Growth, vol. 298, pp. 2864-2866, 2009.
    [135] M. Kneissl, Z. H. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N. M. Johnson, S. Schujman, and L. J. Schowalter, “Ultraviolet semiconductor laser diodes on bulk AlN,” J. Appl. Phys., vol. 101, pp. 123103-1–123103-5, 2007.
    [136] V. Adivarahan, Q. Fareed, M. Islam, T. Katona, B. Krishnan, and A. Khan, “Robust 290 nm Emission Light Emitting Diodes over Pulsed Laterally Overgrown AlN,” Jpn. J. Appl. Phys., vol. 46, pp. L877-L879, 2007.
    [137] M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, S. Kamiyama, M. Yamaguchi, Y. Honda, H. Amano, and I. Akasaki, “AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates,” Appl. Phys. Express, vol. 4, pp. 0921021-1–092102-3, 2011.
    [138] A. Knauer, V. Kueller, S. Einfeldt, V. Hoffmann, T. Kolbe, J.-R. van Look, J. Piprek, M. Weyers, M. Kneissl, “Influence of the barrier composition on the light output of InGaN multiple quantum-well ultraviolet light emitting diodes,” Proc. SPIE, vol. 6797, pp. 67970X-1–67970X-6, 2007.
    [139] O. Goto, S. Tomiya, Y. Hoshina, T. Tanaka, M. Ohta, Y. Ohizumi, Y. Yabuki, K. Funato,; M. Ikeda, “High power pure-blue semiconductor lasers,” Proc. SPIE, vol. 6485, pp. 64850Z-1–64850Z-8, 2007.
    [140] J. Xu, M. F. Schubert, A. N. Noemaun, D.i Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, pp. 011113-1–011113-3, 2009.
    [141] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431–L1433, 2002
    [142] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang“Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron Device Lett., vol. 52, pp. 2346–2349, 2005
    [143] A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and Henri Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett., vol. 88, pp. 061124-1–061124-3, 2006.
    [144] C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photon. Technol. Lett., vol. 17, pp. 2038–2040, 2005.
    [145] H. N. Ng, N. G.Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching,” J. Appl. Phys., vol. 94, pp. 650–653, 2003
    [146] J. Lee, X. Li,1 X. Ni, Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland, and K. R. Evans, “On carrier spillover in c- and m-plane InGaN light emitting diodes,” Appl. Phys. Lett., vol. 95, pp. 201113-1–20113-3, 2009.
    [147] M.-H. Kim, M. F. Schubert, Q. Dai, J.-K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507-1–183507-3, 2007.
    [148] S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, pp. 231123-1–231123-3, 2009.
    [149] Y.-K. Kuo, Y.-H. Shih, M.-C. Tsai, and J.-Y. Chang, “Improvement in Electron Overflow of Near-Ultraviolet InGaN LEDs by Specific Design on Last Barrier,” IEEE Photon. Technol. Lett., vol. 23, pp. 1630-1632, 2011.
    [150] Y.-H. Cho, J. J. Song, S. Keller, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Influence of Si doping on characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 73, pp. 1128-1130, 1998.
    [151] E. S. Oh, C. S. Sone, O. H. Nam, H. S. Park, and Y. J. Park, “Comparison of Si doping effect in optical properties of GaN epilayers and InxGa1−xNquantum wells,” Appl. Phys. Lett., vol. 76, pp. 3242-3244, 2000.
    [152] S. Y. Karpov, and Y. N. Makarov, “Effects of Built-In Polarization and Carrier Overflow on InGaN Quantum-Well Lasers With Electronic Blocking Layers”, Appl. Phys. Lett., vol. 81, pp. 4721-4723, 2002.
    [153] T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, S. Sakai, and P. Eliseev, “Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures”, Appl. Phys. Lett., vol. 76, pp. 1737-1739, 2000.
    [154] M. Y. Ryu, P. W. Yu, E. j. Shin, J. I. Lee, S. K. Yu, E. Oh, O. H. Nam, C. S. Sone, and Y. J. Park, “Effects of Si-doping in the barriers on the recombination dynamics in In0.15Ga0.85N/In0.015Ga0.985N quantum wells”, J. Appl. Phys., vol. 89, pp. 634-637, 2001.
    [155] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes”, IEEE J. Quantum Electron., vol. 38, pp. 446-450, 2002.
    [156] J. H. Ryou, J. Limb, W. Lee, J. Liu, Z. Lochner, D. Yoo, and R. D. Dupuis, “Effect of Silicon Doping in the Quantum-Well Barriers on the Electrical and Optical Properties of Visible Green Light-Emitting Diodes”, IEEE Photon. Technol. Lett., vol. 20, pp. 1769-171, 2008.
    [157] D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping”, Appl. Phys. Lett., vol. 96, pp. 121110-1–121110-3, 2010.
    [158] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski and J. Bradley, “Properties of high‐purity AlxGa1−xAs grown by the metalorganic vapor‐phase‐epitaxy technique using methyl precursors”, J. Appl. Phys., vol. 62, pp. 632-643, 1987.
    [159] T. M. Katona, P. Cantu, S. Keller, Y. Wu, J. S. Speck and S. P. DenBaars, “Maskless lateral epitaxial overgrowth of high-aluminum-content AlxGa1−xN”, Appl. Phys. Lett., vol. 84, pp. 5025-5027, 2004.
    [160] P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth”, Rep. Prog. Phys.,vol. 67, pp. 667-715, 2004
    [161] K. Nakano, M. Imura, G. Narita, T. Kitano, Y. Hirose, N. Fujimoto, N. Okada, T. Kawashima, K. Iida, K. Balakrishnan, M. Tsuda, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, “Epitaxial lateral overgrowth of AlN layers on patterned sapphire substrates,” phys. stat. sol. (a), vol. 203, pp. 1632-1635, 2006.
    [162] A. Knigge, M. Brendel, F. Brunner, S. Einfeldt, A. Knauer, V. Kueller, M. Weyers, “AlGaN photodetectors for the UV-C spectral region on planar and epitaxial laterally overgrown AlN/sapphire templates,” phys. stat. sol. (c), vol. 10, pp. 294-297, 2013.
    [163] D. Zhu, M. J. Kappers, C. McAleese, D. M. Graham, G. R. Chabrol, N. P. Hylton, P. Dawson, E. J. Thrush, and C. J. Humphreys, “Optical and micro-structural properties of high photoluminescence efficiency InGaN/AlInGaN quantum well structures,” J. Cryst. Growth, vol. 298, pp. 504-507, 2007.
    [164] S. F. Yu, S. J. Chang, R. M. Lin, Y. H. Lin, Y. C. Lu, S. P. Chang, and Y. Z. Chiou, “Growth of quaternary AlInGaN with various TMI molar rates,” J. Cryst. Growth, vol. 312, pp. 1920-1924, 2010.
    [165] Y. Liu, T. Egawa, H. Ishikawa, H. Jiang, B. Zhang, M. Hao, and T. Jimbo, “High-temperature-grown quaternary AlInGaN epilayers and multiple quantum wells for ultraviolet emission,” J. Cryst. Growth, vol. 264, pp. 159-164, 2004.
    [166] M. E. Aumer, S. F. LeBoeuf, F. G. McIntosh, and S. M. Bedair, “High optical quality AlInGaN by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 75, pp. 3315-3317, 1999.
    [167] A. Chitnis, A. Kumar, M. Shatalov, V. Adivarahan, A. Lunev, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska and M. Shur, “High-quality p–n junctions with quaternary AlInGaN/InGaN quantum wells,” Appl. Phys. Lett., vol. 77, pp. 3800-3802, 2000.
    [168] D.-J. Kim, Y.-T. Moon, K.-M. Song, and S.-J. Park, “Effect of Barrier Thickness on the Interface and Optical Properties of InGaN/GaN Multiple Quantum Wells,” Jpn. J. Appl. Phys., vol. 40, pp. 3085–3088, 2001.
    [169] A.J. Ghazai, S.M. Thahab, H. Abu Hassan, Z. Hassan, “The effects of quantum wells number and the built-in polarization on the performance of quaternary AlInGaN UV laser diode,” Optik, vol. 123, pp. 856-859, 2012.
    [170] M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Carrier transportation and internal quantum efficiency of blue InGaN light-emitting diodes with p-doped barriers,” IEEE Photonics Technol. Lett., vol. 22, pp. 374-376, 2010
    [171] Z.C. Feng, W. Liu, S.J. Chua, J.W. Yu, C.C. Yang, T.R. Yang, J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Solid Films, vol. 498, pp. 118-122, 2006.
    [172] Wang, Y. H. Liu, Y. B. Lee, J. P. Ao, J. Bai and S. Sakai, “1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate,” Appl. Phys. Lett., vol. 81, pp. 2508-2510, 2002.
    [173] Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett., vol. 95, pp. 011116-1–011116-3, 2009
    [174] SiLENSe, STR Group Ltd., St. Petersburg, Russia, http://www.semitech.us.
    [175] C. L. Chao, C. H. Chiu, Y. J. Lee, H. C. Kuo, P.-C. Liu, Jeng Dar Tsay and S. J. Cheng, “Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy,” Appl. Phys. Lett., vol. 95, pp. 051905-1–051905-3, 2009.
    [176] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M.o Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431–L1433, 2002.
    [177] C. H. Kuo, C. C. Lin, S. J. Chang, Y .P. Hsu, J. M. Tsai, W. C. Lai, and P.T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron Device Lett., vol. 52, pp. 2346–2349, 2005.
    [178] A. David, T. Fujii1, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett., vol. 88, pp. 061124-1–061124-3, 2006.
    [179] C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photon. Technol. Lett., vol. 17, pp. 2038–2040, 2005.
    [180] D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, “Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy”, J. Appl. Phys., vol. 90, pp. 4219-4223, 2001.
    [181] Chia-Feng Lin, Chun-Min Lin, Kuei-Ting Chen, Wan-Chun Huang, Ming-Shiou Lin, Jing-Jie Dai,Ren-Hao Jiang, Yu-Chieh Huang and Chung-Ying Chang, “Blue light-emitting diodes with a roughened backside fabricated by wet etching,” Appl. Phys. Lett., vol. 95, pp. 201102-1–201102-3, 2009.
    [182] MA: Artech House, 2000, ch. 7, pp. 285–347
    [183] H. J. Chung, R. J. Choi, M. H. Kim, J. W. Han, Y. M. Park, Y. S. Kim, H. S. Paek, C. S. Sone, Y. J. Park, J. K. Kim, and E. Fred Schubert, “Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers,” Appl. Phys. Lett., vol. 95, pp. 241109-1–241109-3, 2009.
    [184] S. J. Huang, Y. K. Su, C. Y. Tseng, S. C. Lin, and H. C. Hsu, “Improvement of Light Intensity for Nitride-Based Multi-Quantum Well Light Emitting Diodes by Stepwise-Stage Electron Emitting Layer,” Appl. Phys. Express, vol. 3, pp. 122106-1–12106-3, 2010.
    [185] R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, T. C. Wang, and G. C. Chi, “Improvement of near-ultraviolet InGaN-GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature,” IEEE Photonics Technol. Lett , vol. 15, pp. 1342-1344, 2003.
    [186] I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” phys. stat. sol. (a), vol. 204, pp. 227-230, 2007.
    [187] J. R. Chen, C. H. Lee, T. S. Ko, Y. A. Chang, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Effects of Built-In Polarization and Carrier Overflow on InGaN Quantum-Well Lasers With Electronic Blocking Layers,” J. Lightwave Technol., vol. 26, pp. 329-337, 2008.
    [188] Y. K. Kuo, J. Y. Chang, and M. C. Tsai, “ Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett,.vol. 35, pp. 3285-3287, 2010.
    [189] J. F. Nye, “Physical Properties of Crystals, The Representation by Tensors and Martices,”Oxford at the Clarendon Press, 1964.
    [190] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett., vol. 71, pp. 921-923, 1997.
    [191] K. C. Zeng, J. Y. Lin, H. X. Jiang, A. Salvador, G. Popovici, H. Tang, W. Kim, and H. Morkoç, “Effects of well thickness and Si doping on the optical properties of GaN/AlGaN multiple quantum wells,” Appl. Phys. Lett., vol. 71, pp. 1368-1370, 1997.
    [192] S.C. Choo, “Carrier generation-recombination in the space-charge region of an asymmetrical p-n junction,” Solid-State Electron., vol. 11, pp. 1069-1077, 1968.
    [193] V. Kueller, A. Knauer, U. Zeimer, H. Rodriguez, A. Mogilatenko, M. Kneissl, and M. Weyers, “(Al,Ga)N overgrowth over AlN ridges oriented in [1120] and [1100] direction,” phys. stat. sol. (c), vol. 8, pp. 2022-2024, 2011.
    [194] V. Kueller, A. Knauer, U. Zeimera, M. Kneissl, M. Weyers, “Controlled coalescence of MOVPE grown AlN during lateral overgrowth,” J. Cryst. Growth, vol. 368, pp. 83-86, 2013.

    下載圖示 校內:2019-12-27公開
    校外:2019-12-27公開
    QR CODE