簡易檢索 / 詳目顯示

研究生: 林芷瑩
Lin, Chih-Ying
論文名稱: 探討丙戊酸在社交挫敗壓力之小鼠模式中對腸道菌相和多巴胺轉運子的影響
Exploration of the effects of valproic acid on gut microbiome and dopamine transporter in social defeat stress mouse model
指導教授: 張惠華
Chang, Hui Hua
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 311
中文關鍵詞: 雙極症社交挫敗壓力丙戊酸腸道菌相多巴胺轉運子
外文關鍵詞: bipolar disorder, social defeat, valproate, gut microbiota, dopamine transporter
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙極症為一種嚴重且功能失調的情緒疾患。流行病學指出,使用丙戊酸治療的雙極症患者會增加其代謝異常的風險。雖然雙極症的病理生理學尚未被完全了解,據近年研究發現腸道菌相和多巴胺轉運子可能會影響大腦功能和周邊代謝。然而,目前研究針對微生物-腸-腦軸線和多巴胺轉運子,與丙戊酸的治療成效之關聯性,尚未定論。因此,本研究假設腸道菌相與多巴胺轉運子為丙戊酸治療中,作為與腦部治療成效及周邊代謝系統的共同調節因子。本研究使用7週齡雄性C57BL / 6N小鼠,為了誘導小鼠出現雙極症類似行為,施予社交挫敗壓力10天,而後於老鼠腹腔注射為期三週的350mg / kg 丙戊酸或10ml / kg生理食鹽水。本研究透過強迫游泳測試及社會偏好測試,檢測小鼠是否具憂鬱及社交異常行為。收集血液用於三酸甘油脂檢測和葡萄糖耐受性試驗。在丙戊酸治療前後分別收集新鮮糞便檢體,以Illumina次世代定序分析菌相16S rRNA的V3-V4區域,進一步透過線性判別分析(LEfSe),QIIME v1.80和mothur v.1.39.5整合生物資訊。我們利用西方墨點法測試小鼠紋狀體中多巴胺轉運子蛋白表現。統計顯著設於p <0.05。本研究結果顯示社交挫敗壓力誘導小鼠出現雙極症類似行為,包含社會迴避和類憂鬱行為。使用丙戊酸造成對照小鼠和社交挫敗小鼠其腸道微生物分布顯著不同。此外,Escherichia-Shigella屬在社交挫敗小鼠中含量顯著降低,而Enterobacter屬則顯著增加。藉由抗生素操弄腸道菌相可逆轉由壓力所誘導的憂鬱及社交異常行為,以及減緩在社交挫敗小鼠中由丙戊酸引起的高三酸甘油酯。除此之外,本研究亦發現社交挫敗小鼠腦部紋狀體的多巴胺轉運子表現量增加。使用丙戊酸處理後,社交挫敗小鼠的三酸甘油脂升高伴隨著多巴胺轉運子表現量下降,且三酸甘油脂與多巴胺轉運子的表現量具有顯著的負相關關係。根據以上結果,本研究推論腸道菌相和多巴胺轉運子在壓力狀態下扮演重要的角色,並提供雙極症疾患一個有潛力的新治療標的。

    Bipolar disorder (BD) is a severe and dysfunctional mood disorder. Epidemiologic evidences have indicated increased risk of the metabolic abnormalities in BD patients treated with valproic acid (VPA). Although the pathophysiology of BD is not fully understood, recent reports suggested that gut microbiota and dopamine transporter (DAT) activity could affect brain function and metabolic status. Moreover, literatures about the potential role of the microbiota-gut-brain axis and DAT in the therapeutic effect of VPA is unknown. Thus, we hypothesized that gut microbiota and DAT could be common mediators to regulate therapeutic effects in the brain and influence metabolism in the peripheral tissue after VPA treatment. We used seven-week-old male C57BL/6N mice. To mimic bipolar disorder-like behaviours, the mice were under social defeat stress (SD) for 10 days, and then they were injected 350mg/kg VPA or 10ml/kg saline intraperitoneally for 3 weeks. There were two domains to confirm BD-like behaviour, including depression-like (forced swim test) and social behaviour (social preference test). The blood was collected for triglyceride detection and glucose tolerance test. Fresh fecal samples were individually collected at baseline and after VPA treatment. The microbial profiles of the samples were analyzed the V3-V4 regions of the bacterial 16S rRNA gene with next generation sequencing by Illumina. Bioinformatics analyses were performed using linear discriminant analysis effect size (LEfSe), QIIME v1.80 and mothur v.1.39.5. We applied western blotting to verify DAT protein expression on mice striatum. The significance was determined at p<0.05. In the current study, the results showed that social defeat stress developed BD-like behaviors mice, which exhibited social avoidance and depression-like behavior. The composition of gut microbiota was significantly different between saline-treated and VPA-treated control mice and the results were consistent in SD mice. We found that the genus Escherichia-Shigella were significantly less abundant in VPA-treated SD mice, together with the significant increase of Enterobacter when compared with vehicle-treated SD mice. Manipulation of composition of gut microbiota via antibiotic intervention reversed stress-induced depression-like and impaired social behavior, as well as alleviated triglyceride level caused by VPA in SD mice. In addition, SD mice were observed increased DAT expression in striatum. After treated with VPA, SD mice had elevated triglyceride levels along with decreased DAT expression. There was a significant negative correlation between triglyceride level and DAT expression. Taken together, the current study provided evidance of important roles of gut microbiota and DAT under stressful condition, and provided possible new therapeutic strategy in BD.

    中文摘要 I Abstract II Contents IV List of Tables VII List of Figures X List of Appendices XII Abbreviations XIII Chapter 1 Introduction 1 1.1 Bipolar disorder 1 1.1.1 Bipolar disorder and metabolic syndrome 1 1.1.2 Modern pharmacological treatment in bipolar disorder 2 1.2 Valproate 3 1.2.1 Mechanism of action 3 1.2.2 Valproate induced metabolic abnormalities 4 1.3 Microbiota-gut-brain axis 5 1.3.1 Neuroendocrine: Hypothalamic-pituitary-adrenal (HPA) axis 6 1.3.2 Microbial metabolites: Short-Chain Fatty Acid 6 1.3.3 Neurotransmitters and the microbiome 7 1.4 The dopamine hypothesis in bipolar disorder 8 1.4.1 The action of dopamine in CNS and in peripheral tissue 8 1.4.2 The role of dopamine transporter on bipolar disorder 10 Chapter 2 Objective of current study 11 Chapter 3 Materials and methods 12 3.1 Animals 12 3.2 Drug administration 12 3.3 Experimental design 13 3.4 Social defeat stress 14 3.5 Behavioral assessment 16 3.5.1 Open field test 16 3.5.2 Elevated plus maze 17 3.5.3 Forced swimming test 17 3.5.4 Three-chambered social approach task (three-chamber test) 17 3.5.5 Resident-intruder test 18 3.6 Plasma valproate level 18 3.7 Measuring fasting plasma levels of triglyceride 18 3.8 Measuring fasting plasma levels of insulin 19 3.9 Glucose tolerance test 19 3.10 Perfusion and tissue processing 19 3.11 Immunohistochemistry 20 3.12 Immunoblotting 20 3.13 16s rRNA analysis of fecal sample 21 3.13.1 Fecal sample collection and DNA extraction 21 3.13.2 PCR amplification and Miseq sequencing 21 3.13.3 Bioinformatic analysis 22 3.14 Statistical analysis 23 Chapter 4 Results 24 4.1 Effects of social defeat and valproate on neurobehavior, metabolic index and microbiota profile 24 4.1.1 Social defeat developed bipolar disorder-like behaviors in mice 24 4.1.2 Social defeat reduced weight gain with similar food consumption 26 4.1.3 Social defeat impaired triglyceride levels 26 4.1.4 Social defeat changed the composition of gut microbiota 27 4.1.5 Abundance of gut microbiota correlate with neurobehavior and metabolic index 28 4.1.6 Valproate administration did not alter neurobehavior in mice 28 4.1.7 The body weight gain was not affected by valproate administration while food consumption increased in defeated mice 28 4.1.8 The combination of social defeat and valproate impaired triglyceride level 29 4.1.9 VPA ameliorated social defeat-induced glucose intolerance while impaired fasting glucose level 30 4.1.10 Valproate changed the composition of gut microbiota among four groups 30 4.2 Effects of microbiota in VPA-induced hypertriglyceridemia in social defeat mouse model 31 4.2.1 Gut microbiota manipulation did not alter social defeat-induced social avoidance 31 4.2.2 Gut microbiota manipulation improved social defeat-induced depression-like behavior 31 4.2.3 Gut microbiota manipulation improved social defeat-induced impaired social behavior 32 4.2.4 The combination of valproate and antibiotic cocktails administration did not alter neurobehavior in mice 32 4.2.5 The combination of valproate and antibiotic cocktails administration did not alter body weight and food consumption in mice 33 4.2.6 The change of triglyceride tended to decrease in defeated mice treated with valproate after manipulation of gut microbiota 33 4.2.7 Antibiotics-treated mice showed characteristic enlarged cecum 34 4.3 The relationship between dopamine transporter and VPA in social defeat mouse model 34 Chapter 5 Discussion 278 5.1 The role of social defeat on body weight gain and food consumption 278 5.2 The causal relationship between social defeat and decreased triglyceride levels 278 5.3 Decreased triglyceride level in defeated mice treated with valproate after antibiotics treatment may due to the reduction of secondary bile acids 279 5.4 The comparison of germ-free mice and antibiotics treatment on neurobehavior 280 5.5 The pathological mechanism of enlarged cecum in antibiotic-treated mice 281 5.6 The relationship of gut microbiota and neurobehavior after social defeat 281 5.7 The relationship of dopamine transporter and valproate in both mice and human 282 5.8 Clinical implication 283 5.9 Limitation 284 Chapter 6 Conclusion 286 Chapter 7 Reference 287 Appendix 298

    Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem, 52(5), 1655-1658. doi:10.1111/j.1471-4159.1989.tb09224.x
    Ahn, T., Bae, C. S., & Yun, C.-H. (2016). Acute stress-induced changes in hormone and lipid levels in mouse plasma (Vol. 61).
    Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., . . . Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885-1895. doi:10.1016/j.psyneuen.2012.03.024
    Anand, A., Barkay, G., Dzemidzic, M., Albrecht, D., Karne, H., Zheng, Q. H., . . . Yoder, K. K. (2011). Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord, 13(4), 406-413. doi:10.1111/j.1399-5618.2011.00936.x
    Angst, J., Gamma, A., Benazzi, F., Ajdacic, V., Eich, D., & Rossler, W. (2003). Toward a re-definition of subthreshold bipolarity: epidemiology and proposed criteria for bipolar-II, minor bipolar disorders and hypomania. J Affect Disord, 73(1-2), 133-146.
    Armario, A., Montero, J. L., & Balasch, J. (1986). Sensitivity of corticosterone and some metabolic variables to graded levels of low intensity stresses in adult male rats. Physiology & Behavior, 37(4), 559-561. doi:https://doi.org/10.1016/0031-9384(86)90285-4
    Atmaca, M. (2009). Valproate and neuroprotective effects for bipolar disorder. Int Rev Psychiatry, 21(4), 410-413. doi:10.1080/09540260902962206
    Au - Tatem, K. S., Au - Quinn, J. L., Au - Phadke, A., Au - Yu, Q., Au - Gordish-Dressman, H., & Au - Nagaraju, K. (2014). Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases. JoVE(91), e51785. doi:doi:10.3791/51785
    Bachmanov, A. A., Reed, D. R., Beauchamp, G. K., & Tordoff, M. G. (2002). Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet, 32(6), 435-443.
    Bai, X., Hong, W., Cai, P., Chen, Y., Xu, C., Cao, D., . . . Jin, J. (2017). Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol, 324, 12-25. doi:10.1016/j.taap.2017.03.022
    Bai, Y. M., Su, T. P., Li, C. T., Tsai, S. J., Chen, M. H., Tu, P. C., & Chiou, W. F. (2015). Comparison of pro-inflammatory cytokines among patients with bipolar disorder and unipolar depression and normal controls. Bipolar Disord, 17(3), 269-277. doi:10.1111/bdi.12259
    Bedarf, J. R., Hildebrand, F., Goeser, F., Bork, P., & Wullner, U. (2019). [The gut microbiome in Parkinson's disease]. Nervenarzt, 90(2), 160-166. doi:10.1007/s00115-018-0601-6
    Belcastro, V., D'Egidio, C., Striano, P., & Verrotti, A. (2013). Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res, 107(1-2), 1-8. doi:10.1016/j.eplepsyres.2013.08.016
    Berger, M., Gray, J. A., & Roth, B. L. (2009). The Expanded Biology of Serotonin. Annual Review of Medicine, 60(1), 355-366. doi:10.1146/annurev.med.60.042307.110802
    Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., & Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci, 360(1462), 1935-1943. doi:10.1098/rstb.2005.1725
    Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., . . . Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol Psychiatry, 82(7), 472-487. doi:10.1016/j.biopsych.2016.12.031
    Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C., & Gould, T. D. (2012). The mouse forced swim test. J Vis Exp(59), e3638-e3638. doi:10.3791/3638
    Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., . . . Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303
    Carpenter, A. C., Saborido, T. P., & Stanwood, G. D. (2012). Development of Hyperactivity and Anxiety Responses in Dopamine Transporter-Deficient Mice. Developmental Neuroscience, 34(2-3), 250-257. doi:10.1159/000336824
    Chambers, E. S., Viardot, A., Psichas, A., Morrison, D. J., Murphy, K. G., Zac-Varghese, S. E. K., . . . Frost, G. (2015). Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut, 64(11), 1744. doi:10.1136/gutjnl-2014-307913
    Chang, C. M., Wu, C. S., Huang, Y. W., Chau, Y. L., & Tsai, H. J. (2016). Utilization of Psychopharmacological Treatment Among Patients With Newly Diagnosed Bipolar Disorder From 2001 to 2010. J Clin Psychopharmacol, 36(1), 32-44. doi:10.1097/jcp.0000000000000440
    Chang, H. H., Yang, Y. K., Gean, P. W., Huang, H. C., Chen, P. S., & Lu, R. B. (2010). The role of valproate in metabolic disturbances in bipolar disorder patients. J Affect Disord, 124(3), 319-323. doi:10.1016/j.jad.2009.12.011
    Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A, 111(6), 2247-2252. doi:10.1073/pnas.1322269111
    Chang, T. T., Yeh, T. L., Chiu, N. T., Chen, P. S., Huang, H. Y., Yang, Y. K., . . . Lu, R. B. (2010). Higher striatal dopamine transporters in euthymic patients with bipolar disorder: a SPECT study with [99mTc] TRODAT-1. Bipolar Disord, 12(1), 102-106. doi:10.1111/j.1399-5618.2009.00771.x
    Chang, T. T., Yeh, T. L., Chiu, N. T., Chen, P. S., Huang, H. Y., Yang, Y. K., . . . Lu, R. B. (2010). Higher striatal dopamine transporters in euthymic patients with bipolar disorder: a SPECT study with [Tc] TRODAT-1. Bipolar Disord, 12(1), 102-106. doi:10.1111/j.1399-5618.2009.00771.x
    Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 783-791.
    Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., . . . Cryan, J. F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 18(6), 666-673. doi:10.1038/mp.2012.77
    Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117-143. doi:10.1111/j.1442-9993.1993.tb00438.x
    Cousins, D. A., Butts, K., & Young, A. H. (2009). The role of dopamine in bipolar disorder. Bipolar Disord, 11(8), 787-806. doi:10.1111/j.1399-5618.2009.00760.x
    Crane, J. D., Palanivel, R., Mottillo, E. P., Bujak, A. L., Wang, H., Ford, R. J., . . . Steinberg, G. R. (2014). Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nature Medicine, 21, 166. doi:10.1038/nm.3766
    https://www.nature.com/articles/nm.3766#supplementary-information
    Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 13(10), 701-712. doi:10.1038/nrn3346
    Dinan, T. G., & Cryan, J. F. (2013). Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil, 25(9), 713-719. doi:10.1111/nmo.12198
    Egger, J., & Brett, E. M. (1981). Effects of sodium valproate in 100 children with special reference to weight. British medical journal (Clinical research ed.), 283(6291), 577-581. doi:10.1136/bmj.283.6291.577
    Fiorucci, S., & Distrutti, E. (2015). Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends Mol Med, 21(11), 702-714. doi:10.1016/j.molmed.2015.09.001
    Foster, J. A., & McVey Neufeld, K. A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 36(5), 305-312. doi:10.1016/j.tins.2013.01.005
    Foster, M. T., Solomon, M. B., Huhman, K. L., & Bartness, T. J. (2006). Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(5), R1284-R1293. doi:10.1152/ajpregu.00437.2005
    Fu, J., Bonder, M. J., Cenit, M. C., Tigchelaar, E. F., Maatman, A., Dekens, J. A., . . . Zhernakova, A. (2015). The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res, 117(9), 817-824. doi:10.1161/circresaha.115.306807
    Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., . . . Ohno, H. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446-450. doi:10.1038/nature12721
    Gacias, M., Gaspari, S., Santos, P.-M. G., Tamburini, S., Andrade, M., Zhang, F., . . . Casaccia, P. (2016). Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLife, 5, e13442. doi:10.7554/eLife.13442
    Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., . . . Li, N. (2017). Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. Journal of translational medicine, 15(1), 13-13. doi:10.1186/s12967-016-1105-4
    Gohir, W., Whelan, F. J., Surette, M. G., Moore, C., Schertzer, J. D., & Sloboda, D. M. (2015). Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother's periconceptional diet. Gut Microbes, 6(5), 310-320. doi:10.1080/19490976.2015.1086056
    Golden, S. A., Covington, H. E., 3rd, Berton, O., & Russo, S. J. (2011). A standardized protocol for repeated social defeat stress in mice. Nat Protoc, 6(8), 1183-1191. doi:10.1038/nprot.2011.361
    Gorelova, N., Mulholland, P. J., Chandler, L. J., & Seamans, J. K. (2012). The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb Cortex, 22(2), 327-336. doi:10.1093/cercor/bhr107
    Goto, T., & Toyoda, A. (2015). A Mouse Model of Subchronic and Mild Social Defeat Stress for Understanding Stress-induced Behavioral and Physiological Deficits. J Vis Exp(105). doi:10.3791/52973
    Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3-4), 325-338. doi:10.1093/biomet/53.3-4.325
    Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. The Lancet, 387(10027), 1561-1572. doi:10.1016/S0140-6736(15)00241-X
    Green, A. L., Zhan, L., Eid, A., Zarbl, H., Guo, G. L., & Richardson, J. R. (2017). Valproate increases dopamine transporter expression through histone acetylation and enhanced promoter binding of Nurr1. Neuropharmacology, 125, 189-196. doi:10.1016/j.neuropharm.2017.07.020
    Grover, M., & Kashyap, P. C. (2014). Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil, 26(6), 745-748. doi:10.1111/nmo.12366
    Guida, F., Turco, F., Iannotta, M., De Gregorio, D., Palumbo, I., Sarnelli, G., . . . Maione, S. (2018). Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun, 67, 230-245. doi:10.1016/j.bbi.2017.09.001
    Guize, L., Pannier, B., Thomas, F., Bean, K., Jego, B., & Benetos, A. (2008). Recent advances in metabolic syndrome and cardiovascular disease. Arch Cardiovasc Dis, 101(9), 577-583. doi:10.1016/j.acvd.2008.06.011
    Hossain, P., Kawar, B., & El Nahas, M. (2007). Obesity and diabetes in the developing world--a growing challenge. N Engl J Med, 356(3), 213-215. doi:10.1056/NEJMp068177
    Huang, X., & Yang, Z. (2016). Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans. J Endocrinol Invest, 39(6), 607-615. doi:10.1007/s40618-015-0408-2
    Huo, R., Zeng, B., Zeng, L., Cheng, K., Li, B., Luo, Y., . . . Xie, P. (2017). Microbiota Modulate Anxiety-Like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal Axis. Front Cell Infect Microbiol, 7, 489. doi:10.3389/fcimb.2017.00489
    Hylemon, P. B., Zhou, H., Pandak, W. M., Ren, S., Gil, G., & Dent, P. (2009). Bile acids as regulatory molecules. J Lipid Res, 50(8), 1509-1520. doi:10.1194/jlr.R900007-JLR200
    Ianiro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 65(11), 1906. doi:10.1136/gutjnl-2016-312297
    Iniguez, S. D., Riggs, L. M., Nieto, S. J., Dayrit, G., Zamora, N. N., Shawhan, K. L., . . . Warren, B. L. (2014). Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice. Stress, 17(3), 247-255. doi:10.3109/10253890.2014.910650
    Isovich, E., Engelmann, M., Landgraf, R., & Fuchs, E. (2001). Social isolation after a single defeat reduces striatal dopamine transporter binding in rats. Eur J Neurosci, 13(6), 1254-1256.
    Jernberg, C., Lofmark, S., Edlund, C., & Jansson, J. K. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 156(Pt 11), 3216-3223. doi:10.1099/mic.0.040618-0
    Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., . . . Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun, 48, 186-194. doi:10.1016/j.bbi.2015.03.016
    Johnson, P. M., & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci, 13(5), 635-641. doi:10.1038/nn.2519
    Johnston, D. (1984). Valproic Acid: Update on Its Mechanisms of Action. Epilepsia, 25(s1), S1-S4. doi:10.1111/j.1528-1157.1984.tb05630.x
    Kanemura, H., Sano, F., Maeda, Y.-i., Sugita, K., & Aihara, M. (2012). Valproate sodium enhances body weight gain in patients with childhood epilepsy: A pathogenic mechanisms and open-label clinical trial of behavior therapy. Seizure - European Journal of Epilepsy, 21(7), 496-500. doi:10.1016/j.seizure.2012.05.001
    Kemp, D. E. (2014). Managing the side effects associated with commonly used treatments for bipolar depression. J Affect Disord, 169 Suppl 1, S34-44. doi:10.1016/s0165-0327(14)70007-2
    Kessing, L. V., Vradi, E., & Andersen, P. K. (2015). Life expectancy in bipolar disorder. Bipolar Disord, 17(5), 543-548. doi:10.1111/bdi.12296
    Kilbourne, A. M., Rofey, D. L., McCarthy, J. F., Post, E. P., Welsh, D., & Blow, F. C. (2007). Nutrition and exercise behavior among patients with bipolar disorder. Bipolar Disord, 9(5), 443-452. doi:10.1111/j.1399-5618.2007.00386.x
    Kirchgessner, A. L., & Gershon, M. D. (1990). Innervation of the pancreas by neurons in the gut. J Neurosci, 10(5), 1626-1642.
    Krishnan, V., Han, M.-H., Graham, D. L., Berton, O., Renthal, W., Russo, S. J., . . . Nestler, E. J. (2007). Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell, 131(2), 391-404. doi:https://doi.org/10.1016/j.cell.2007.09.018
    Kuno, T., Hirayama-Kurogi, M., Ito, S., & Ohtsuki, S. (2018). Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific Reports, 8(1), 1253. doi:10.1038/s41598-018-19545-1
    Li, Y., Ding, L., Hassan, W., Abdelkader, D., & Shang, J. (2013). Adipokines and hepatic insulin resistance. J Diabetes Res, 2013, 170532. doi:10.1155/2013/170532
    Lozupone, C., & Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol, 71(12), 8228-8235. doi:10.1128/AEM.71.12.8228-8235.2005
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., & Knight, R. (2010). UniFrac: an effective distance metric for microbial community comparison. The Isme Journal, 5, 169. doi:10.1038/ismej.2010.133
    https://www.nature.com/articles/ismej2010133#supplementary-information
    Luo, Y., Zeng, B., Zeng, L., Du, X., Li, B., Huo, R., . . . Xie, P. (2018). Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry, 8(1), 187. doi:10.1038/s41398-018-0240-5
    Lurie, I., Yang, Y. X., Haynes, K., Mamtani, R., & Boursi, B. (2015). Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. J Clin Psychiatry, 76(11), 1522-1528. doi:10.4088/JCP.15m09961
    Lyte, M. (2004). Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol, 12(1), 14-20.
    M, D. E. H., Correll, C. U., Bobes, J., Cetkovich-Bakmas, M., Cohen, D., Asai, I., . . . Leucht, S. (2011). Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry, 10(1), 52-77.
    Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int, 95(1), 50-60.
    McElroy, S. L., & Keck, P. E., Jr. (2014). Metabolic syndrome in bipolar disorder: a review with a focus on bipolar depression. J Clin Psychiatry, 75(1), 46-61. doi:10.4088/JCP.13r08634
    McGaughey, K. D., Yilmaz-Swenson, T., Elsayed, N. M., Cruz, D. A., Rodriguiz, R. M., Kritzer, M. D., . . . Williamson, D. E. (2019). Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety- and depressive-like behavior following social defeat in mice. Scientific Reports, 9(1), 3281. doi:10.1038/s41598-019-40140-5
    McVey Neufeld, K. A., Kay, S., & Bienenstock, J. (2018). Mouse Strain Affects Behavioral and Neuroendocrine Stress Responses Following Administration of Probiotic Lactobacillus rhamnosus JB-1 or Traditional Antidepressant Fluoxetine. Front Neurosci, 12, 294. doi:10.3389/fnins.2018.00294
    Mesdjian, E., Ciesielski, L., Valli, M., Bruguerolle, B., Jadot, G., Bouyard, P., & Mandel, P. (1982). Sodium valproate: kinetic profile and effects on GABA levels in various brain areas of the rat. Prog Neuropsychopharmacol Biol Psychiatry, 6(3), 223-233.
    Niimi, K., & Takahashi, E. (2019). New system to examine the activity and water and food intake of germ-free mice in a sealed positive-pressure cage. Heliyon, 5(8), e02176. doi:https://doi.org/10.1016/j.heliyon.2019.e02176
    Novick, A. M., Forster, G. L., Tejani-Butt, S. M., & Watt, M. J. (2011). Adolescent social defeat alters markers of adult dopaminergic function. Brain research bulletin, 86(1-2), 123-128. doi:10.1016/j.brainresbull.2011.06.009
    Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12(1), 385. doi:10.1186/1471-2105-12-385
    Ostadhadi, S., Imran Khan, M., Norouzi-Javidan, A., & Dehpour, A.-R. (2016). Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway. Biomedicine & Pharmacotherapy, 81, 295-304. doi:https://doi.org/10.1016/j.biopha.2016.04.026
    Perry, W., Minassian, A., Paulus, M. P., Young, J. W., Kincaid, M. J., Ferguson, E. J., . . . Geyer, M. A. (2009). A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry, 66(10), 1072-1080. doi:10.1001/archgenpsychiatry.2009.58
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., . . . Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(Database issue), D590-D596. doi:10.1093/nar/gks1219
    Reinholz, J., Skopp, O., Breitenstein, C., Bohr, I., Winterhoff, H., & Knecht, S. (2008). Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations. Nutrition & metabolism, 5, 35-35. doi:10.1186/1743-7075-5-35
    Remage-Healey, L., & Michael Romero, L. (2002). Corticosterone and insulin interact to regulate plasma glucose but not lipid concentrations in molting starlings. Gen Comp Endocrinol, 129(2), 88-94.
    Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. J Lipid Res, 47(2), 241-259. doi:10.1194/jlr.R500013-JLR200
    Ridlon, J. M., Kang, D. J., Hylemon, P. B., & Bajaj, J. S. (2014). Bile acids and the gut microbiome. Curr Opin Gastroenterol, 30(3), 332-338. doi:10.1097/mog.0000000000000057
    Rosenberg, G. (2007). The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cellular and Molecular Life Sciences, 64(16), 2090-2103. doi:10.1007/s00018-007-7079-x
    Rubi, B., Ljubicic, S., Pournourmohammadi, S., Carobbio, S., Armanet, M., Bartley, C., & Maechler, P. (2005). Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem, 280(44), 36824-36832. doi:10.1074/jbc.M505560200
    Savignac, H. M., Finger, B. C., Pizzo, R. C., O'Leary, O. F., Dinan, T. G., & Cryan, J. F. (2011). Increased sensitivity to the effects of chronic social defeat stress in an innately anxious mouse strain. Neuroscience, 192, 524-536. doi:10.1016/j.neuroscience.2011.04.054
    Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol, 12(6), R60. doi:10.1186/gb-2011-12-6-r60
    Sharma, R. P., Rosen, C., Kartan, S., Guidotti, A., Costa, E., Grayson, D. R., & Chase, K. (2006). Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res, 88(1-3), 227-231. doi:10.1016/j.schres.2006.07.015
    Sigitova, E., Fisar, Z., Hroudova, J., Cikankova, T., & Raboch, J. (2017). Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci, 71(2), 77-103. doi:10.1111/pcn.12476
    Snider, S. R., & Kuchel, O. (1983). Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocr Rev, 4(3), 291-309. doi:10.1210/edrv-4-3-291
    Spohn, S. N., & Mawe, G. M. (2017). Non-conventional features of peripheral serotonin signalling - the gut and beyond. Nat Rev Gastroenterol Hepatol, 14(7), 412-420. doi:10.1038/nrgastro.2017.51
    Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research, 1693, 128-133. doi:https://doi.org/10.1016/j.brainres.2018.03.015
    Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., . . . Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol, 558(Pt 1), 263-275. doi:10.1113/jphysiol.2004.063388
    Thaiss, C. A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A. C., . . . Elinav, E. (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 159(3), 514-529. doi:10.1016/j.cell.2014.09.048
    Tidey, J. W., & Miczek, K. A. (1996). Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res, 721(1-2), 140-149. doi:10.1016/0006-8993(96)00159-x
    Tong, S. T. Y. (1992). The use of non-metric multidimensional scaling as an ordination technique in resource survey and evaluation: a case study from southeast Spain. Applied Geography, 12(3), 243-260. doi:https://doi.org/10.1016/0143-6228(92)90042-L
    Valentini, M., Piermattei, A., Di Sante, G., Migliara, G., Delogu, G., & Ria, F. (2014). Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells. Journal of Immunology Research, 2014, 8. doi:10.1155/2014/586939
    Vancampfort, D., Vansteelandt, K., Correll, C. U., Mitchell, A. J., De Herdt, A., Sienaert, P., . . . De Hert, M. (2013). Metabolic syndrome and metabolic abnormalities in bipolar disorder: a meta-analysis of prevalence rates and moderators. Am J Psychiatry, 170(3), 265-274. doi:10.1176/appi.ajp.2012.12050620
    VanDongen, A. M., VanErp, M. G., & Voskuyl, R. A. (1986). Valproate reduces excitability by blockage of sodium and potassium conductance. Epilepsia, 27(3), 177-182.
    Verrotti, A., D'Egidio, C., Mohn, A., Coppola, G., & Chiarelli, F. (2011). Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev, 12(5), e32-43. doi:10.1111/j.1467-789X.2010.00800.x
    Verrotti, A., la Torre, R., Trotta, D., Mohn, A., & Chiarelli, F. (2009). Valproate-induced insulin resistance and obesity in children. Horm Res, 71(3), 125-131. doi:10.1159/000197868
    Vestri, H. S., Maianu, L., Moellering, D. R., & Garvey, W. T. (2007). Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology, 32(4), 765-772. doi:10.1038/sj.npp.1301142
    Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc, 2(2), 322-328. doi:10.1038/nprot.2007.44
    Wang, G. J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W., . . . Fowler, J. S. (2001). Brain dopamine and obesity. Lancet, 357(9253), 354-357. doi:10.1016/s0140-6736(00)03643-6
    Wang, J., Michelhaugh, S. K., & Bannon, M. J. (2007). Valproate robustly increases Sp transcription factor-mediated expression of the dopamine transporter gene within dopamine cells. Eur J Neurosci, 25(7), 1982-1986. doi:10.1111/j.1460-9568.2007.05460.x
    Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 213-251.
    Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., & Siuzdak, G. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences, 106(10), 3698. doi:10.1073/pnas.0812874106
    Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., . . . Tsuji, H. (2007). Improvement of Obesity and Glucose Tolerance by Acetate in Type 2 Diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Bioscience, Biotechnology, and Biochemistry, 71(5), 1236-1243. doi:10.1271/bbb.60668
    Yildirim, E., Zhang, Z., Uz, T., Chen, C.-q., Manev, R., & Manev, H. (2003). Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neuroscience Letters, 345(2), 141-143. doi:https://doi.org/10.1016/S0304-3940(03)00490-7
    Zarate, C. A., Jr., Payne, J. L., Singh, J., Quiroz, J. A., Luckenbaugh, D. A., Denicoff, K. D., . . . Manji, H. K. (2004). Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiatry, 56(1), 54-60. doi:10.1016/j.biopsych.2004.03.013

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE