| 研究生: |
黃柏綱 Huang, Po-Kang |
|---|---|
| 論文名稱: |
利用PN異質結製作有機N型記憶體元件之記憶與電特性研究 Memory and electrical effects in organic n-type memory transistors with pn heterojunctions |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 有機記憶體元件 、PN異質結構 、電荷載子傳輸 |
| 外文關鍵詞: | Organic transistor memory, p-n heterojunction, charge carrier transportation |
| 相關次數: | 點閱:94 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討由Pentacene/PTCDI-C13H27形成的異質型結構(p-n heterojunction)對有機N型記憶體元件之電特性與記憶效應的影響,利用P型半導體五苯環素(Pentacene)成長於N型半導體十三烷基駢苯衍生物(N,N′-ditridecylperylene-3,4,9,10- tetracarboxylic diimide, PTCDI-C13H27)上,製作出異質型結構的薄膜,並使用聚亞醯胺(Polyimide, PI)作為載子捕捉層材料,在此異質型結構上再透過物理氣相沉積製程製作15 nm厚的PTCDI-C13H27與80 nm厚銀電極,完成頂接觸式有機N型記憶體元件的製備。
經由TEM與AFM的分析結果顯示,當Pentacene厚度為2 nm~5 nm時,結晶形貌呈現出散佈狀的三維島嶼結構(island type);當Pentacene厚度為10nm時,成長出傳統的樹突狀晶格結構,顯示在初期成長時,Pentacene分子的堆疊排列行為受到底層PTCDI-C13H27的影響,而有特殊的成長機制,而材料結晶度與晶格平面相關參數透過2D GI XRD來分析,當Pentacene分子在2 nm~5 nm厚度下時,較傾向往垂直於基板方向堆疊,水平方向的分子擴散能力較差,使得薄膜形成不連續性的結晶形貌;當Pentacene分子在8 nm~10 nm厚度時,橫向排列的有序度大幅提升,成長出連續性的晶格結構,且在厚度為10nm時,Pentacene薄膜具備高的結晶程度。
在電特性分析方面,當Pentacene的厚度在5nm時,記憶窗口有最大值48.9V,而在Pentacene的厚度為8 nm~10 nm時,記憶窗口卻逐漸下滑,此結果與異質結構薄膜分析結果相符,表示不連續的Pentacene結晶晶格,能在記憶體元件的操作中,提供額外的電洞載子,使得記憶窗口得到一定的增益,若Pentacene薄膜晶格連續性佳,可使得電洞載子傳輸通道被建立,使得上層PTCDI-C13H27的電子難以注入到下層結構及PI材料中,導致記憶窗口下降,由電容電壓分析與輸出特性曲線也能驗證上述結果。在記憶持久力方面,由於異質型結構中電子電洞覆合行為難以被抑制,使得記憶持久力的表現不佳,然而在記憶體耐久力方面卻表現出不錯的結果,元件在100次連續操作後,Pentacene 5 nm厚度的記憶體元件仍維持40V以上的記憶窗口。實驗最後一部分利用雷射光輔助的方式嘗試進一步提升記憶體元件的記憶效應,結果顯示由於被捕捉之電子已能被足量的電洞所清除,使得在Pentacene厚度5~10 nm時,光輔助方式對於記憶效應提升的效果並不顯著,然而在厚度為2 nm時,由於Pentacene結晶晶粒較為分散且結晶度不佳,使得光生載子的效應較為明顯。本研究發現了Pentacene分子在PTCDI-C13H27上特殊的晶格成長行為,並成功利用此異質型結構提升記憶體元件的記憶窗口。
The relationship between the thickness of pentacene in p-n heterojuntions and the electrical performance of non-volatile organic transistor memories (NVOTMs) was investigated in this study. The pentacene layer was deposited onto a 2.5 nm-thick PTCDI–C13H27 film to construct a heterostructure. The thicknesses of discontinuous pentacene films were found in the range between 2 and 5 nm measured by using atomic force microscope, while the completely continuous pentacene layer was about 10 nm. An ambipolar behavior in the output characteristics was observed in the NOVM with the continuous pentacene layer. Only n-type output characteristic was obtained in the NOVMs with the discontinuous pentacene layers. These results show that the continuous pentacene layer can improve the transport of holes, whereas the discontinuous pentacene layer cannot produce sufficient holes within the conductive channel. The memory windows of all NOVMs with p-n heterojunctions were studied. Among all the devices, the NOVM embedded the 5 nm-thick pentacene layer within the PTCDI–C13H27 has the largest memory window. This significant performance could be attributed to the appearance of discontinuous pentacene layer, which can provide the minority, i.e. holes, to promote the erasing ability. On the contrary, the continuous pentacene layer screens the trapped electrons during the programming operation and reduces the injection of holes during the erasing operation, yielding a decrease of memory window. In summary, we demonstrated an effective method to control the memory window by inserting p-n-heterojunction structure at polyimide/PTCDI-C13H27 interface.
[1] Qi-Dan Linga, Der-Jang Liawb, Chunxiang Zhuc, Daniel Siu-Hung Chanc, En-Tang Kanga, Koon-Gee Neoha “Polymer electronic memories: Materials, devices and mechanisms”, Prog. Polym. Sci., 3, 917, 2008.
[2] Wei Lin Leong, Nripan Mathews, Bertha Tan, Subramanian Vaidyanathan, Florian Dotz, and Subodh Mhaisalkar, “Towards printable organic thin film transistor based flash memory devices”, J. Mater. Chem., 21, 5203, 2011.
[3] Sandip Tiwari, Farhan Rana, Hussein Hanafi, Allan Hartstein, Emmanuel F. Crabbé and Kevin Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett., 68, 1377, 1996.
[4] D. Tsoukalasa, P. Dimitrakis, S. Kolliopoulou, P. Normand, “Recent advances in nanoparticle memories”, Materials Science and Engineering: B, 124-125, 93, 2005.
[5] K. J. Baeg, Y. Y. Noh, H. Sirringhaus and D. Y. Kim, “Controllable shifts in threshold voltage of top‐gate polymer field‐effect transistors for applications in organic nano floating gate memory “, Adv. Funct. Mater.,20, 224, 2009.
[6] S. M. Wang, C. W. Leung and P. K. L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles “, Org. Electron., 11, 990, 2010.
[7] W. Wang, J. W. Shi and D. G. Ma, “Organic thin-film transistor memory with nanoparticle floating gate “, IEEE Trans. Electron Devices., 56, 1036, 2009.
[8] L. Zhen, W. Guan, L. Shang, M. Liu and G. Liu, “Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric “, J. Phys. D: Appl. Phys., 41, 135111, 2008.
[9] W. Wang, J. Shi and D. Ma, “Organic thin-film transistor memory with nanoparticle floating gate”, IEEE Trans. Electron Devices, 56, 1036, 2009.
[10] A. Doron, E. Katz and I. Willner, “Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers “, Langmuir, 11, 1313, 1995.
[11] JR. W. Murray, “Chemically modified electrodes “, Acc. Chem. Res., 13, 135, 1980.
[12] W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dotz and S. Mhaisalkar, “All solution processed non-volatile top-gate polymer field effect transistors “, J. Mater. Chem., 21, 8971, 2011.
[13] K. J. Baeg, D. Khim, D. Y. Kim, S. W. Jung, J. B. Koo and Y. Y. Noh, “Organic nano-floating-gate memory with polymer:[6, 6]-phenyl-C61 butyric acid methyl ester composite films “, Jpn. J. Appl. Phys., 49, 05EB01, 2010.
[14] Howard E. Katz, X. Michael Hong, Ananth Dodabalapur and Rahul Sarpeshkar, “Organic field-effect transistors with polarizable gate insulators ”, Appl. Phys., 91, 1572, 2005.
[15] K.-J. Baeg, Y.-Y. Noh, J. Ghim, S.-J. Kang, H. Lee, D.-Y. Kim, “Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret ”, Adv. Mater., 18, 3179, 2006.
[16] Kang-Jun Baeg, Yong-Young Noh, Jieun Ghim, Bogyu Lim, Dong-Yu Kim, “Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory”, Adv. Funct.Mater.,18, 3678, 2008.
[17] M. Debucquoya, M. Rockelé, J. Genoe, G.H. Gelinck, P. Heremans, “Charge trapping in organic transistor memories: On the role of electrons and holes ”, Org. Electron., 10, 1252, 2009.
[18] Lay-Lay Chua, Jana Zaumseil, Jui-Fen Chang, Eric C.-W. Ou, Peter K.-H. Ho, Henning Sirringhaus & Richard H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors”, Nature, 434, 194, 2005.
[19] Maarten Debucquoy, Dieter Bode, Jan Genoe, Gerwin H. Gelinck and Paul Heremans, “An organic charge trapping memory transistor with bottom source and drain contacts ”, Appl. Phys. Lett., 95, 103311, 2009.
[20] Yunlong Guo, Chong-an Di, Shanghui Ye, Xiangnan Sun, Jian Zheng, Yugeng Wen, Weiping Wu, Gui Yu, Yunqi Liu, “Multibit Storage of Organic Thin-Film Field-Effect Transistors”, Adv. Mater., 21, 1954 2009.
[21] Chia-Chieh Chang, Zingway Pei, and Yi-Jen Chan, “Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory ”, Appl. Phys. Lett., 93, 143302, 2008.
[22] Th. B. Singh, N. Marjanović, G. J. Matt, and N. S. Sariciftci, R. Schwödiauer and S. Bauer, “Nonvolatile organic field-effect transistor memory element with a polymeric gate electret”, Appl. Phys. Lett., 85, 5409, 2004.
[23] Biswanath Mukherjeea, Moumita Mukherjeea, “Programmable memory in organic field-effect transistor based on lead phthalocyanine”, Org. Electronic, 10, 1282, 2009.
[24] Philipp Stadler, Kerstin Oppelt, Thokchom Birendra Singh, James G. Grote, Reinhard Schwödiauer, Siegfried Bauer, Heidi Piglmayer-Brezina, Dieter Bäuerle, Niyazi Serdar Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric”, Org. Electronic, 8, 648, 2007.
[25] Yunhwan Park, Subeom Park, Insu Jo, Byung Hee Hong, Yongtaek Hong, “Controlled growth of a graphene charge-floating gate for organic non-volatile memory transistors”, Org. Electronic, 27, 227, 2015.
[26] Sang-A Lee, Dae-Yoon Kim, Kwang-Un Jeong, Sang Hyun Lee, Sukang Bae, Dong Su Lee, Gunuk Wang, Tae-Wook Kim, “Molecular-scale charge trap medium for organic non-volatile memory transistors” Org. Electronic, 27, 18, 2015.
[27] Yunhwan Park, Dipti Gupta, Changhee Lee, Yongtaek Hong, “Role of tunneling layer in graphene-oxide based organic nonvolatile memory transistors”, Org. Electronic, 13, 2887, 2012.
[28] Z. Baoa and J.A. Rogersb, “Thin-film Transistors From Organic Semiconducting Materials, Processing Technologies for”, Encyclopedia of Materials: Science and Technology (Second Edition), 9319-9323, 2001.
[29] C.D. Dimitrakopoulos, “Organic Field-Effect Transistors for Large-Area Electronics”, Advanced Semiconductor and Organic Nano-Techniques, 191-240, 2003.
[30] O.D. Jurchescu, “13 – Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique ”, Handbook of Organic Materials for Optical and (Opto)electronic Devices, A volume in Woodhead Publishing Series in Electronic and Optical Materials, 377–397, 2013.
[31] M. A. Lampert, “ Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps ”, Physical Review, 103, 1648, 1956.
[32] M. Debucquoy, M. Rockele, J. Genoe, G.H. Gelinck, P. Heremans, “Charge trapping in organic transistor memories: On the role of electrons and holes ”, Organic Electronics, 10, 1252-1258, 2009.
[33] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “ Flash Memory Cells-An Overview ”, Proceedings of The IEEE, 85, 1248, 1997.
[34] Jin Woo Kim, Mi Hye Yi, Taek Ahn, “ Surface energy control of soluble polyimide gate insulators by copolymerization method for high performance pentacene thin-film transistors”, Thin Solid Films, 546, 147-152, 2013.
[35] Sungmi Yoo, Yun Ho Kim, Jae-Won Ka, Yong Seok Kim, Mi Hye Yi, Kwang-Suk Jang, “Polyimide/polyvinyl alcohol bilayer gate insulator for low-voltage organic thin-film transistors”, Organic Electronics, 23, 213-218, 2015.
[36] Kwang-Suk Jang, Hye Jung Suk, Won Soo Kim, Taek Ahn, Jae-Won Ka, Jinsoo Kim, Mi Hye Yi, “Direct photo-patternable, low-temperature processable polyimide gate insulator for pentacene thin-film transistors”, Organic Electronics, 13, 1665-1670, 2012.
[37] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, ”High mobility n-type thin-film transistors based on N, N-ditridecyl perylene diimide with thermal treatments”, Appl. Phys. Lett., 89, 112108, 2006.
[38] Ricardo Ruiz, Devashish Choudhary, Bert Nickel, Tullio Toccoli, Kee- Chul Chang, Alex C. Mayer, Paulette Clancy, Jack M. Blakely, Randall L.Headrick, Salvatore Iannotta, and George G. Malliaras, “Pentacene Thin Film Growth”, Chem. Mater., 16, 4497–4508, 2004.
[39]Dmitrii Nabok, Peter Puschnig, and Claudia Ambrosch-Draxl, “Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations”, Physical Review b, 76, 235322, 2007.
[40]薛增泉, 吳全德, 李浩, “薄膜物理”, 47-48, 電子工業出版社, 1989.
[41]薛增泉, 吳全德, 李浩, “薄膜物理”, 29-31, 電子工業出版社, 1989.
[42] Hoichang Yang, Mang-Mang Ling, and Lin Yang, “Temperature- Dependent Pentacene Nanostructures on Hydrophobic Gate-Dielectrics Correlated with Charge Carrier Mobilities”, J. Phys. Chem. C, 111, 12508-12511, 2007.
[43] Junhyung Kim, Seung Chul Lee, Hwa Sung Lee, Chang Wan Kim, Wi Hyoung Lee, “Effects of film microstructure on the bias stability of pentacene field-effect transistors”, Org. Electronic, 29, 7-12, 2016.
[44] Hwa Sung Lee, Do Hwan Kim, Jeong Ho Cho, Minkyu Hwang, Yunseok Jang, and Kilwon Cho, “Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor Characteristics”, J. Am. Chem. Soc., 130, 10556-10564, 2008.
[45]K. Ahn, J. B. Kim, H. Park, H. Kim, M. H. Lee, B. J. Kim, J. H. Cho, M. S. Kang, and D. R. Lee, “Enhancing crystallinity of C60 layer by thickness-control of underneath pentacenelayer for high mobility C60/pentacene ambipolar transistors”, Appl. Phys. Lett., 102, 043306, 2013.
[46]X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and, P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor”, Appl. Phys. Lett., 99, 043303, 2011.
[47] Yong Zhang, Caili Lang, Jingze Fan, Lei Shi, Yuanping Yi, Qingjiang Yu, Fengyun Guo, Jinzhong Wang, Liancheng Zhao, “High mobility multibit nonvolatile memory elements based organic field effect transistors with large hysteresis”, Org. Electronic, 35, p53-58, 2016.
[48] J. Lee, S. Lee, M. H. Lee, and M. S. Kang, “Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories”, Appl. Phys. Lett., 106, 063302, 2015.