簡易檢索 / 詳目顯示

研究生: 黃柏綱
Huang, Po-Kang
論文名稱: 利用PN異質結製作有機N型記憶體元件之記憶與電特性研究
Memory and electrical effects in organic n-type memory transistors with pn heterojunctions
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 有機記憶體元件PN異質結構電荷載子傳輸
外文關鍵詞: Organic transistor memory, p-n heterojunction, charge carrier transportation
相關次數: 點閱:94下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討由Pentacene/PTCDI-C13H27形成的異質型結構(p-n heterojunction)對有機N型記憶體元件之電特性與記憶效應的影響,利用P型半導體五苯環素(Pentacene)成長於N型半導體十三烷基駢苯衍生物(N,N′-ditridecylperylene-3,4,9,10- tetracarboxylic diimide, PTCDI-C13H27)上,製作出異質型結構的薄膜,並使用聚亞醯胺(Polyimide, PI)作為載子捕捉層材料,在此異質型結構上再透過物理氣相沉積製程製作15 nm厚的PTCDI-C13H27與80 nm厚銀電極,完成頂接觸式有機N型記憶體元件的製備。
    經由TEM與AFM的分析結果顯示,當Pentacene厚度為2 nm~5 nm時,結晶形貌呈現出散佈狀的三維島嶼結構(island type);當Pentacene厚度為10nm時,成長出傳統的樹突狀晶格結構,顯示在初期成長時,Pentacene分子的堆疊排列行為受到底層PTCDI-C13H27的影響,而有特殊的成長機制,而材料結晶度與晶格平面相關參數透過2D GI XRD來分析,當Pentacene分子在2 nm~5 nm厚度下時,較傾向往垂直於基板方向堆疊,水平方向的分子擴散能力較差,使得薄膜形成不連續性的結晶形貌;當Pentacene分子在8 nm~10 nm厚度時,橫向排列的有序度大幅提升,成長出連續性的晶格結構,且在厚度為10nm時,Pentacene薄膜具備高的結晶程度。
    在電特性分析方面,當Pentacene的厚度在5nm時,記憶窗口有最大值48.9V,而在Pentacene的厚度為8 nm~10 nm時,記憶窗口卻逐漸下滑,此結果與異質結構薄膜分析結果相符,表示不連續的Pentacene結晶晶格,能在記憶體元件的操作中,提供額外的電洞載子,使得記憶窗口得到一定的增益,若Pentacene薄膜晶格連續性佳,可使得電洞載子傳輸通道被建立,使得上層PTCDI-C13H27的電子難以注入到下層結構及PI材料中,導致記憶窗口下降,由電容電壓分析與輸出特性曲線也能驗證上述結果。在記憶持久力方面,由於異質型結構中電子電洞覆合行為難以被抑制,使得記憶持久力的表現不佳,然而在記憶體耐久力方面卻表現出不錯的結果,元件在100次連續操作後,Pentacene 5 nm厚度的記憶體元件仍維持40V以上的記憶窗口。實驗最後一部分利用雷射光輔助的方式嘗試進一步提升記憶體元件的記憶效應,結果顯示由於被捕捉之電子已能被足量的電洞所清除,使得在Pentacene厚度5~10 nm時,光輔助方式對於記憶效應提升的效果並不顯著,然而在厚度為2 nm時,由於Pentacene結晶晶粒較為分散且結晶度不佳,使得光生載子的效應較為明顯。本研究發現了Pentacene分子在PTCDI-C13H27上特殊的晶格成長行為,並成功利用此異質型結構提升記憶體元件的記憶窗口。

    The relationship between the thickness of pentacene in p-n heterojuntions and the electrical performance of non-volatile organic transistor memories (NVOTMs) was investigated in this study. The pentacene layer was deposited onto a 2.5 nm-thick PTCDI–C13H27 film to construct a heterostructure. The thicknesses of discontinuous pentacene films were found in the range between 2 and 5 nm measured by using atomic force microscope, while the completely continuous pentacene layer was about 10 nm. An ambipolar behavior in the output characteristics was observed in the NOVM with the continuous pentacene layer. Only n-type output characteristic was obtained in the NOVMs with the discontinuous pentacene layers. These results show that the continuous pentacene layer can improve the transport of holes, whereas the discontinuous pentacene layer cannot produce sufficient holes within the conductive channel. The memory windows of all NOVMs with p-n heterojunctions were studied. Among all the devices, the NOVM embedded the 5 nm-thick pentacene layer within the PTCDI–C13H27 has the largest memory window. This significant performance could be attributed to the appearance of discontinuous pentacene layer, which can provide the minority, i.e. holes, to promote the erasing ability. On the contrary, the continuous pentacene layer screens the trapped electrons during the programming operation and reduces the injection of holes during the erasing operation, yielding a decrease of memory window. In summary, we demonstrated an effective method to control the memory window by inserting p-n-heterojunction structure at polyimide/PTCDI-C13H27 interface.

    目錄 中文摘要 I Extend Abstract III 誌謝 VIII 目錄 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 有機記憶體簡介 1 1-1-1有機奈米晶粒結構非揮發性記憶體 2 1-1-2有機高分子駐極體非揮發性記憶體 3 1-2 研究動機 5 第二章 有機薄膜電晶體與記憶元件工作原理 8 2-1前言 8 2-2有機薄膜電晶體基本結構 8 2-3有機薄膜電晶體操作原理 9 2-4有機薄膜電晶體基本電特性與參數萃取方法 9 2-4-1臨界電壓 10 2-4-2汲極電流公式 10 2-4-3 電流開關比 12 2-4-4次臨界擺幅 12 2-4-5載子遷移率 13 2-5 有機記憶體元件之操作原理 13 2-5-1記憶體寫入與清除原理 14 2-5-2記憶窗口 14 2-5-3記憶保持能力 15 2-5-4耐久度 15 2-6電容-電壓曲線特性 16 第三章 實驗方法 22 3-1實驗材料 22 3-1-1元件基板 22 3-1-2有機高分子薄膜材料 22 3-1-3 N型有機半導體材料 23 3-1-4 P型有機半導體材料 23 3-2元件製作流程 24 3-3分析儀器介紹 25 3-3-1半導體參數分析儀 25 3-3-2電容分析儀 26 3-3-3原子力顯微鏡 26 3-3-4 2D GI X-ray薄膜繞射儀 27 3-3-5 穿透式電子顯微鏡 27 第四章 實驗結果 31 4-1前言 31 4-2薄膜特性分析 31 4-2-1 原子力顯微鏡分析 31 4-2-2 TEM影像分析 33 4-2-3 2D GI X-ray薄膜繞射分析 33 4-3有機非揮發性記憶體元件電性分析 35 4-3-1輸出特性曲線 36 4-3-2轉換特性曲線 37 4-3-3電容-電壓分析 38 4-3-4記憶窗口分析 39 4-3-5光輔助清除之電性量測 40 4-3-6記憶保持能力 41 4-3-7耐久力 42 4-3-8 電導掃頻分析 43 第五章 結論 68 5-1實驗結論 68 5-2未來工作 70 參考文獻 71 表目錄 表4-1不同Pentacene厚度之表面方均根粗糙度 45 表4-2不同厚度Pentacene之異質結構有機薄膜電晶體電特性表 46 表4-3不同Pentacene厚度之有機記憶元件電特性表 47 表4-4光輔助清除記憶元件電特性表 48 表4-5異質結構之有機記憶元件耐久力損失分析表 49 表4-6電導分析之深層界面缺陷態位密度(Dit)與界面缺陷態位密度維持時間(τit)電特性表 50 表4-6電導分析之淺層界面缺陷態位密度(Dit)與界面缺陷態位密度維持時間(τit)電特性表 51   圖目錄 圖1-1有機記憶體分類形式 6 圖1-2有機快閃記憶體之結構示意圖 7 圖2-1有機薄膜電晶體結構示意圖: (a) Bottom-gate, bottom-contact (b) Top gate, bottom-contact (c) Bottom-gate, top-contact (d) Top-gate, top-contact 17 圖2-2有機N型薄膜電晶體操作原理示意圖 18 圖2-3臨界電壓參數選取示意圖 19 圖2-4電晶體相關電特性參數選取(a)電流開關比(On/Off ratio) (b)次臨界擺幅(Subthreshold Swing) 20 圖2-5記憶體元件之記憶窗口參數選取方法 錯誤! 尚未定義書籤。 圖3-1 N型半導體化學結構圖PTCDI-C13H27 28 圖3-2 P型半導體化學結構圖Pentacene 29 圖3-3異質結構之有機薄膜電晶體為基礎的記憶元件結構示意圖 30 圖4-1 AFM試片結構圖 52 圖4-2不同Pentacene厚度之AFM表面形貌圖(a) 0nm (b) 2nm (c) 5nm (d) 8nm (e) 10nm 掃描範圍為1 μm × 1 μm 53 圖4-3 TEM試片結構圖 54 圖4-4不同Pentacene厚度之TEM影像圖(a) 2nm (b) 5nm (c) 8nm (d) 10nm 55 圖4-5不同Pentacene厚度之2D GI X-ray薄膜繞射灰階圖 (a) 2nm (b) 5nm (c) 8nm (d) 10nm 56 圖4-6不同Pentacene厚度之2D GI X-ray薄膜繞射縱向分析圖 (a) 2nm (b) 5nm (c) 8nm (d) 10nm 57 圖4-7不同Pentacene厚度之2D GI X-ray薄膜繞射橫向分析圖(a) 2nm (b) 5nm (c) 8nm (d) 10nm 58 圖4-8 Pentacene分子成長於PTCDI-C13H27之成長機制模擬圖(a) Pentacene厚度2~5nm (b) Pentacene厚度5~10nm 59 圖4-9以不同Pentacene厚度製作異質結構之有機薄膜電晶體輸出特性曲線圖(a) 2nm (b) 5nm (c) 8nm (d) 10nm 60 圖4-10以不同Pentacene厚度製作異質結構之有機薄膜電晶體遲滯特性曲線圖(a) 2nm (b) 5nm (c) 8nm (d) 10nm 61 圖4-11以不同Pentacene厚度製作異質結構之MISM電容器電容-電壓(C-V)曲線圖 62 圖4-12以不同Pentacene厚度製作異質結構之有機記憶元件轉換特性曲線圖(a)0nm (b)2nm (c)5nm (d)8nm (e)10nm 63 圖4-13光輔助操作之有機記憶元件轉換特性圖 (a) 2nm (b) 5nm (c) 8nm (d) 10nm 64 圖4-14以不同Pentacene厚度製作異質結構之有機記憶元件記憶保持力分析圖 65 圖4-15以不同Pentacene厚度製作異質結構之有機記憶元件耐久力圖 (a) 2nm (b) 5nm (c) 8nm (d) 10nm 66 圖4-16 不同製程參數異質結構型電導掃頻(Log f - Gp)分析曲線圖 67

    [1] Qi-Dan Linga, Der-Jang Liawb, Chunxiang Zhuc, Daniel Siu-Hung Chanc, En-Tang Kanga, Koon-Gee Neoha “Polymer electronic memories: Materials, devices and mechanisms”, Prog. Polym. Sci., 3, 917, 2008.
    [2] Wei Lin Leong, Nripan Mathews, Bertha Tan, Subramanian Vaidyanathan, Florian Dotz, and Subodh Mhaisalkar, “Towards printable organic thin film transistor based flash memory devices”, J. Mater. Chem., 21, 5203, 2011.
    [3] Sandip Tiwari, Farhan Rana, Hussein Hanafi, Allan Hartstein, Emmanuel F. Crabbé and Kevin Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett., 68, 1377, 1996.
    [4] D. Tsoukalasa, P. Dimitrakis, S. Kolliopoulou, P. Normand, “Recent advances in nanoparticle memories”, Materials Science and Engineering: B, 124-125, 93, 2005.
    [5] K. J. Baeg, Y. Y. Noh, H. Sirringhaus and D. Y. Kim, “Controllable shifts in threshold voltage of top‐gate polymer field‐effect transistors for applications in organic nano floating gate memory “, Adv. Funct. Mater.,20, 224, 2009.
    [6] S. M. Wang, C. W. Leung and P. K. L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles “, Org. Electron., 11, 990, 2010.
    [7] W. Wang, J. W. Shi and D. G. Ma, “Organic thin-film transistor memory with nanoparticle floating gate “, IEEE Trans. Electron Devices., 56, 1036, 2009.
    [8] L. Zhen, W. Guan, L. Shang, M. Liu and G. Liu, “Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric “, J. Phys. D: Appl. Phys., 41, 135111, 2008.
    [9] W. Wang, J. Shi and D. Ma, “Organic thin-film transistor memory with nanoparticle floating gate”, IEEE Trans. Electron Devices, 56, 1036, 2009.
    [10] A. Doron, E. Katz and I. Willner, “Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers “, Langmuir, 11, 1313, 1995.
    [11] JR. W. Murray, “Chemically modified electrodes “, Acc. Chem. Res., 13, 135, 1980.
    [12] W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dotz and S. Mhaisalkar, “All solution processed non-volatile top-gate polymer field effect transistors “, J. Mater. Chem., 21, 8971, 2011.
    [13] K. J. Baeg, D. Khim, D. Y. Kim, S. W. Jung, J. B. Koo and Y. Y. Noh, “Organic nano-floating-gate memory with polymer:[6, 6]-phenyl-C61 butyric acid methyl ester composite films “, Jpn. J. Appl. Phys., 49, 05EB01, 2010.
    [14] Howard E. Katz, X. Michael Hong, Ananth Dodabalapur and Rahul Sarpeshkar, “Organic field-effect transistors with polarizable gate insulators ”, Appl. Phys., 91, 1572, 2005.
    [15] K.-J. Baeg, Y.-Y. Noh, J. Ghim, S.-J. Kang, H. Lee, D.-Y. Kim, “Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret ”, Adv. Mater., 18, 3179, 2006.
    [16] Kang-Jun Baeg, Yong-Young Noh, Jieun Ghim, Bogyu Lim, Dong-Yu Kim, “Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory”, Adv. Funct.Mater.,18, 3678, 2008.
    [17] M. Debucquoya, M. Rockelé, J. Genoe, G.H. Gelinck, P. Heremans, “Charge trapping in organic transistor memories: On the role of electrons and holes ”, Org. Electron., 10, 1252, 2009.
    [18] Lay-Lay Chua, Jana Zaumseil, Jui-Fen Chang, Eric C.-W. Ou, Peter K.-H. Ho, Henning Sirringhaus & Richard H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors”, Nature, 434, 194, 2005.
    [19] Maarten Debucquoy, Dieter Bode, Jan Genoe, Gerwin H. Gelinck and Paul Heremans, “An organic charge trapping memory transistor with bottom source and drain contacts ”, Appl. Phys. Lett., 95, 103311, 2009.
    [20] Yunlong Guo, Chong-an Di, Shanghui Ye, Xiangnan Sun, Jian Zheng, Yugeng Wen, Weiping Wu, Gui Yu, Yunqi Liu, “Multibit Storage of Organic Thin-Film Field-Effect Transistors”, Adv. Mater., 21, 1954 2009.
    [21] Chia-Chieh Chang, Zingway Pei, and Yi-Jen Chan, “Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory ”, Appl. Phys. Lett., 93, 143302, 2008.
    [22] Th. B. Singh, N. Marjanović, G. J. Matt, and N. S. Sariciftci, R. Schwödiauer and S. Bauer, “Nonvolatile organic field-effect transistor memory element with a polymeric gate electret”, Appl. Phys. Lett., 85, 5409, 2004.
    [23] Biswanath Mukherjeea, Moumita Mukherjeea, “Programmable memory in organic field-effect transistor based on lead phthalocyanine”, Org. Electronic, 10, 1282, 2009.
    [24] Philipp Stadler, Kerstin Oppelt, Thokchom Birendra Singh, James G. Grote, Reinhard Schwödiauer, Siegfried Bauer, Heidi Piglmayer-Brezina, Dieter Bäuerle, Niyazi Serdar Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric”, Org. Electronic, 8, 648, 2007.
    [25] Yunhwan Park, Subeom Park, Insu Jo, Byung Hee Hong, Yongtaek Hong, “Controlled growth of a graphene charge-floating gate for organic non-volatile memory transistors”, Org. Electronic, 27, 227, 2015.
    [26] Sang-A Lee, Dae-Yoon Kim, Kwang-Un Jeong, Sang Hyun Lee, Sukang Bae, Dong Su Lee, Gunuk Wang, Tae-Wook Kim, “Molecular-scale charge trap medium for organic non-volatile memory transistors” Org. Electronic, 27, 18, 2015.
    [27] Yunhwan Park, Dipti Gupta, Changhee Lee, Yongtaek Hong, “Role of tunneling layer in graphene-oxide based organic nonvolatile memory transistors”, Org. Electronic, 13, 2887, 2012.
    [28] Z. Baoa and J.A. Rogersb, “Thin-film Transistors From Organic Semiconducting Materials, Processing Technologies for”, Encyclopedia of Materials: Science and Technology (Second Edition), 9319-9323, 2001.
    [29] C.D. Dimitrakopoulos, “Organic Field-Effect Transistors for Large-Area Electronics”, Advanced Semiconductor and Organic Nano-Techniques, 191-240, 2003.
    [30] O.D. Jurchescu, “13 – Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique ”, Handbook of Organic Materials for Optical and (Opto)electronic Devices, A volume in Woodhead Publishing Series in Electronic and Optical Materials, 377–397, 2013.
    [31] M. A. Lampert, “ Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps ”, Physical Review, 103, 1648, 1956.
    [32] M. Debucquoy, M. Rockele, J. Genoe, G.H. Gelinck, P. Heremans, “Charge trapping in organic transistor memories: On the role of electrons and holes ”, Organic Electronics, 10, 1252-1258, 2009.
    [33] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “ Flash Memory Cells-An Overview ”, Proceedings of The IEEE, 85, 1248, 1997.
    [34] Jin Woo Kim, Mi Hye Yi, Taek Ahn, “ Surface energy control of soluble polyimide gate insulators by copolymerization method for high performance pentacene thin-film transistors”, Thin Solid Films, 546, 147-152, 2013.
    [35] Sungmi Yoo, Yun Ho Kim, Jae-Won Ka, Yong Seok Kim, Mi Hye Yi, Kwang-Suk Jang, “Polyimide/polyvinyl alcohol bilayer gate insulator for low-voltage organic thin-film transistors”, Organic Electronics, 23, 213-218, 2015.
    [36] Kwang-Suk Jang, Hye Jung Suk, Won Soo Kim, Taek Ahn, Jae-Won Ka, Jinsoo Kim, Mi Hye Yi, “Direct photo-patternable, low-temperature processable polyimide gate insulator for pentacene thin-film transistors”, Organic Electronics, 13, 1665-1670, 2012.
    [37] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, ”High mobility n-type thin-film transistors based on N, N-ditridecyl perylene diimide with thermal treatments”, Appl. Phys. Lett., 89, 112108, 2006.
    [38] Ricardo Ruiz, Devashish Choudhary, Bert Nickel, Tullio Toccoli, Kee- Chul Chang, Alex C. Mayer, Paulette Clancy, Jack M. Blakely, Randall L.Headrick, Salvatore Iannotta, and George G. Malliaras, “Pentacene Thin Film Growth”, Chem. Mater., 16, 4497–4508, 2004.

    [39]Dmitrii Nabok, Peter Puschnig, and Claudia Ambrosch-Draxl, “Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations”, Physical Review b, 76, 235322, 2007.
    [40]薛增泉, 吳全德, 李浩, “薄膜物理”, 47-48, 電子工業出版社, 1989.
    [41]薛增泉, 吳全德, 李浩, “薄膜物理”, 29-31, 電子工業出版社, 1989.
    [42] Hoichang Yang, Mang-Mang Ling, and Lin Yang, “Temperature- Dependent Pentacene Nanostructures on Hydrophobic Gate-Dielectrics Correlated with Charge Carrier Mobilities”, J. Phys. Chem. C, 111, 12508-12511, 2007.
    [43] Junhyung Kim, Seung Chul Lee, Hwa Sung Lee, Chang Wan Kim, Wi Hyoung Lee, “Effects of film microstructure on the bias stability of pentacene field-effect transistors”, Org. Electronic, 29, 7-12, 2016.
    [44] Hwa Sung Lee, Do Hwan Kim, Jeong Ho Cho, Minkyu Hwang, Yunseok Jang, and Kilwon Cho, “Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor Characteristics”, J. Am. Chem. Soc., 130, 10556-10564, 2008.
    [45]K. Ahn, J. B. Kim, H. Park, H. Kim, M. H. Lee, B. J. Kim, J. H. Cho, M. S. Kang, and D. R. Lee, “Enhancing crystallinity of C60 layer by thickness-control of underneath pentacenelayer for high mobility C60/pentacene ambipolar transistors”, Appl. Phys. Lett., 102, 043306, 2013.
    [46]X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and, P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor”, Appl. Phys. Lett., 99, 043303, 2011.
    [47] Yong Zhang, Caili Lang, Jingze Fan, Lei Shi, Yuanping Yi, Qingjiang Yu, Fengyun Guo, Jinzhong Wang, Liancheng Zhao, “High mobility multibit nonvolatile memory elements based organic field effect transistors with large hysteresis”, Org. Electronic, 35, p53-58, 2016.
    [48] J. Lee, S. Lee, M. H. Lee, and M. S. Kang, “Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories”, Appl. Phys. Lett., 106, 063302, 2015.

    下載圖示 校內:2021-08-18公開
    校外:2021-08-18公開
    QR CODE