| 研究生: |
黃伯融 Huang, Po-Jung |
|---|---|
| 論文名稱: |
以靜電紡絲製備氧化鋅奈米線於氣體感測研究 Fabrication ZnO nanowires using an electrospinning technique and their application as gas sensors |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 氣體感測 、靜電紡絲 、氧化鋅柰米線 |
| 外文關鍵詞: | gas sensor, ZnO nanowires, electrospinning |
| 相關次數: | 點閱:68 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用簡易之靜電紡絲技術配合溶-凝膠法製備氧化鋅奈米線,首先將高分子聚乙烯醇溶入醋酸鋅溶液中,形成前驅物溶膠,將此前驅物溶膠經靜電紡絲術形成一維結構,所製備之前驅物電紡絲經由煅燒處理移除有機相形成氧化鋅奈米線,藉由改變其前驅物溶膠特性、靜電紡絲製程參數(噴射距離、噴射速率),煅燒處理溫度和時間以及升溫速率等,可瞭解各種參數對於氧化鋅電紡絲結構與性質的影響,並以熱重分析儀去分析電紡絲的熱性質,掃描式電子顯微鏡觀察其表面型貌,X-ray量測其成份以及晶面,陰極螢光激發光譜探討其氧化鋅電紡絲的光學性質,從X-ray分析得知氧化鋅電紡絲結構與結晶性會受到煅燒處理的影響,在電子顯微鏡下觀察所製備之氧化鋅電紡絲可發現生成的直徑藉由參數的改變可從500nm到90nm,直徑會隨著煅燒溫度升高與時間增長而變細,也會因前驅物導電特性變好而變細,陰極激發光譜證明氧化鋅在紫外光處(368nm)有明顯波峰,可見光激發則相對微弱,說明所製備之氧化鋅電紡絲結構與紫外光發光特性良好,並利用靜電紡絲術直接將前驅物電紡絲沉積在感測電極上形成電極間之架橋,並在煅燒處理後,對乙醇氣體進行感測特性的探討。
This paper reports a simple method for large-scale fabrication of ZnO nanowires by combining a sol-gel process and an electrospinning process. Gel containing polyvinyl acetate (PVA) and zinc acetate was first prepared as the precursor. The precursor was then electrospun to nanowires. The polymeric nanowires thus obtained were calcined to form ZnO nanowires. By varying the precursor gel properties, the electrospinning conditions (injection rate and spray distance), calcination temperature, and calcination time, the ZnO nanowires having desired characteristics were obtained. The nanowires were characterized using thermogravimetry analysis for the thermo properties, scanning electron microscopy for the morphology, X-ray diffractometry (XRD) and cathode luminescence spectrometry for the luminescence property. The XRD results show that crystal structure of zinc oxide nanowires largely depends on the calcination temperature and time. The SEM analysis reveals that the zinc oxide nanowires have diameters in the range of 90-500nm. The diameter of the zinc oxide nanowires decreases with increasing zinc acetate concentration, and also decreases as the calcination temperature and time increase. The CL results show that the ZnO nanowires obtained exhibit very weak visible band emission and very strong UV band emission at 368 nm, indicating a good structure quality. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. Ethanol-sensing characteristics were also studied.
1 Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton and J.R. LaRoche, “ZnO nanowire growth and devices” Materials Science and Engineering: R: Reports, 47, p.1 (2004).
2 G.S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y.H. Xiao and L.D. Zhang, “Controlled synthesis of ZnO nanowires or nanotubes via sol gel template process” Solid State Communications, 134, p.485 (2005).
3 Yongsheng Zhang, Ke Yu, Shixi Ouyang, Ziqiang Zhu, “Patterned growth and field emission of ZnO nanowires “ Materials Letters, 60, p.522 (2006).
4Chun Li, Guojio Fang, Fuhai Su, Gouhua Li, Xiaoguang Wu, “Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures” Nanotechnology 17, p.3740 (2006).
5 Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property “Applied Physics Letters, 85(2004)5923.
6 Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors” Applied Physics Letters, 84(2004)3654.
7 J. Min-Chang, O. Byeong-Yun, H. Moon-Ho, L. Sang-Won, M. and Jae-Min,” Characteristics of Al-doped ZnO transparent conductive oxide films for solar cell application“Small, 3(2007)568.
8 I. I. Novochinskii, C. Song, X. Ma, X. Liu, L. Shore, J. Lampert, and R. J. Farrauto, “Low-Temperature H2S Removal from Steam-Containing
Gas Mixtures with ZnO for Fuel Cell Application. 1.
ZnO Particles and Extrudates” Energy and Fuels, 18(2004)576.
9 Ting-Jen Hsueh, Cheng-Liang Hsu,Shoou-Jinn Chang,I-Cherng Chen , “Laterally grown ZnO nanowire ethanol gas sensors” Sens, Actuators B 126 (2007) 473-477.
10 Ting-Jen Hsueh, Shoou-Jinn Chang, “Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption”Applied Physics Letters, 91, 053111(2007).
11 Guan Wang, Yuan Ji , Xianrong Huang , Xiaoqing Yang, “Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing”J. Phys. Chem. B 2006, p. 110,23777-23782 .
12 Q.H. Li, Y. X. Liang, Q Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors”Applied Physics Letters, 85[26], 6389(2004).
13 Hui Wu, Dandan Lin, Rui Zhang, and Wei Panw ,” Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly,and Magnetic Properties”J. Am. Ceram. Soc., 91 [2] 656–659 (2008)
14 Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, ” Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films” Appl. Phys. Lett. 1998, 72, 3270
15 D. C. Reynolds, D. C. Lock and B. Jogai, “Optically pumped lasing of ZnO at room temperature” Solid State Commun. 1996, 99, 873
16 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto,” Optically pumped lasing of ZnO at room temperature” Appl. Phys. Lett. 1997, 70, 2230
17 王瑞琪,「新穎氧化鋅奈米材料的成長與光電性質」,國立成功大學材料科學及工程學系博士論文,2005
18 Z. L. Wang, “Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity”Journal of Physics: Condensed Matter, 16(2004) R829.
19 X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. G. Kong, “Temperature dependence of excitonic luminescence from
nanocrystalline ZnO films”Journal of Luminescence 2002, 99, 149
20 廖泓洲,國立交通大學材料科學與工程學系碩士論文,2005
21 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”J. Appl. Phys. 1996, 79 (10), 7983
22 Bixia Lin and Zhuxi Fu, Yunbo Jia, “Green luminescent center in undoped zinc oxide films depositedon silicon substrates”Appl. Phys. Lett. 2001, 79(7), 943-945
23 Wei Li, Dongsheng Mao, Fumin Zhang, Xi Wang, Xianghuai Liu, Shichang Zou, Yukun Zhu, Qiong Li,” Characteristics of ZnO:Zn phosphor thin ®lms by post-deposition annealing” Nuclear Instruments and Methods in Physics Research B 2000, 169, 59
24 H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C.
Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”Appl. Phys. Lett., 77, 3761 (2000)
25 Kwang Joo Kim and Young Ran Park, “Large and abrupt optical band gap variation in In-doped ZnO”Appl. Phys. Lett., 78,475(2000)
26楊明輝,工業材料,2001 年11 月
27 A.Formhals, US Patent 1934, 1-975-504
28G.S. Bhat, R. W. Tock, S. Parameswaran,” Electrospinning of Nanofibers” Applied Polymer Science,Vol. 96 557-569 (2005).
29 Xinghua Yang, Changlu Shao,Hongyu Guan , Xiliang li,Jian Gong, ” Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor”Inorganic Chemistry Communications 7 (2004) 176-178
30 R.Siddheswaran, R. Sankar, M. Ramesh Babu , M. Rathnakumari, R. Jayavel,” Preparation and characterization of ZnO nanofibers by
electrospinning”Cerst. Res. Technol. 41,NO. 5 ,446-449(2006)
31 D.H.Reneker, I. Chun,” Nanometre diameter fibres of polymer, produced by electrospinning” Nanotechnology 1996, 7. 216.
32 J. Livage and M. Henry, “Ultrastructure Processing of Advanced Ceramics”, (J. D.Mackenzie, and D. R. Ulrich, eds.), Wiley, New York , p183. (1988).
33 C. J. Binker and G. W. Scherer, J. Non-Cryst.” SOL -GEL -GLASS: I. GELATION AND GEL STRUCTURE *” Solids 70 , 301-322 (1985).
34 D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, “Metal alkoxide”, Academic Press, London (1978)
35 陳文祥,國立成功大學材料科學與工程學系碩士論文,2007
36 Li, D. ; Xia, Y. ,” Electrospinning of Polymeric and
Ceramic Nanofibers as UniaxiallyAligned Arrays”NANO Lett.2003,3,(4) 555-560.
37 Zhang, G.; Kataphinan, W. ; Teye-Mensah, R.; Katta, P.; Khatri, L. “Electrospun nanofibers for potential space-based applications”Materials Science and Engineering B 2005, 116,(3), 3653-358
38 Azad, A.;M. Materials Science and Engineering A 2006, 116,(3), 435-456.
39 Zhang, Y.; Li, Q.; Zhu, L.; Liu, X.; Zhong, X.; Meng, J.;CaO, X.” Preparation of In2O3 ceramic nanofibers by
electrospinning and their optical properties”Scripta Meterialia 2007,56,(5),409-412
40 Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Lee, D. R.,” Vanadium pentoxide nanofibers by electrospinning” Scripta Meterialia 2003,49,(6),577-581.
41 Lu, X.; Liu, X.; Zhang, W.; Wang, C.; Wei, Y., “Large-scale synthesis of tungsten oxide nanofibers by electrospinning”Journal of Colloid and Interface Science 2006, 298, (2), 996-999.
42 Dharmaraj, N.;Kim, C. H.; Kim, k. W.; Kim, H. Y.” Spectral studies of SnO2 nanofibres prepared by electrospinning method ”Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy 2006, 64, (1), 136-140.
43 Wu, H.;Lin, D.; Pan, W. Applied Physics Letters 2006, 89, (13), 133125-3
44 Yuh, J.; Perez, L.; Sigmund, W. M.; Nino, J. C.” Electrospinning of complex oxide nanofibers” Physica E : low-dimensional Systems and Nanostructures 2007, 37, (1-2), 254-259
45 C. Xu, J. Tamaki, N. Miura and N. Yamazoe,” Correlation between Gas Sensitivity and Crystallite Size in Porous SnO2-Based Sensors”Chemistry Letters, pp. 441-444(1990)
46 D. J. Yoo, J. Tamaki, S. J. Park, N. Miura and N. Yamazoe, “Suppression of Grain Growth in Sol-Gel-Derived Tin Dioxide Ultrathin Films”Journal of the Electrochemical Society, Vol. 142, No. 7,pp. L105-L107(July 1995)
47 Zuowan Zhou, W Peng, S Ke, H Deng ,“Tetropod-shaped ZnO whisker and its composites”Journal of Materials Processing Technology, 89-90, 415, 1999
48 B.P Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, K.
Haga S,Nanotechnology, v.15, S382-S388, 2004
49 G. Zou, D. Yu, D. Wang, W. Zhang L. Xu, W. Yu, Y. Qian,“ Controlled synthesis of ZnO nanocrystals with column-, rosette-and fiber-like morphologies and their photoluminescence property“ Mater. Chem.Phys., v.88, p.15 .154, 2004
50 N.Taguchi. Japn.Pat.45-38200(1962)
51蔡嬪嬪,氣體感測器的新動向,工業材料150 期98 頁(1999)
52 P.B.Weisz, J.Chem.Phys ,Vol.21 , pp.1531 ~ 1538, 1953.
53張希誠,感測器的基礎與應用:工廠與機械人篇,第49-51 頁(1986)
54邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知 第6 卷第6期 第67-71 頁(1985)
55 S. R .Morrision, Chemical sensors in Semiconductor Sensors , ed.S.M.Sze,New York:John Wiley and Sons, Inc., pp.383(1994).
56 P. B. Weisz,J. Chem. Phys., Vol. 21, No. 9, pp. 1531-1538 (1953)
57 H. Windischmann and P. Mark, J.”A Model for the Operation of a Thin-Film SnOx Conductance-Modulation Carbon Monoxide Sensor
” Electrochem. Soc. Vol.126 No.4 pp.627-633 (1979).
58 N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, “Interactions of tin oxide surface with O2, H2O AND H2”Sci. Vol.86 pp. 335-344 (1979).
59 S. C. Chang, “Thin-Film Semiconductor NOx Sensor”IEEE Transac- tions on Electron Devices ,Vol. ED-26, No. 12 pp. 1875~1880 (1979)
60 G. Heiland, “Homogeneous semiconducting gas sensors”Sens. Actuators ,Vol.2 pp. 343~361 (1982)
61 B. Fultz and J. M. Howe, “Transmission electron microscopy and diffractometry od Materials, Springer, 2nd edition (2002)63, 74, 76.
62. B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”,
Prentice Hall, 3rd edition (2001)92, 187.
63 黃宏勝,林麗娟,工業材料雜誌,201 期,100~102,2003
64. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C.” The effect
of processing variables on the morphology of electrospun nanofibers
and textiles”,Polymer 2001,42,(1), 261-272
65. 林坤賢、黃怡慧、王盈淇、徐嘉鴻、王紀,化工,52 卷5 期22~39,
2005
66. Andrew P, Lee, “Temperature modulation in semiconductor gas
sensing”Sensors and Actuators B, Vol.60, pp. 35-42(1999)
67. D. Kohl, Th. Ochs , W. Geyer , M. Fleischer , H. Meixner
“Adsorption and decomposition of methane on gallium oxide
films”Sensors and Actuators B, Vol.59, pp. 140-145(1999)
68. C. Xu, J. Tamaki, N. Miura and N. Yamazoe” Grain size effects on
gas sensitivity of porous SnO2-based elements”,Chemistry Letters, pp.
441-444(1990)
69. J. F. Mcaleer, P. T. Moseley, J. O. W. Norris , D. E.Williams ,” Tin
dioxide gas sensors. Part 1.—Aspects of the surface chemistry
revealed by electrical conductance variations
”Journal of the Chemical Society. Vol. 83, pp. 1323-1346(1987)