簡易檢索 / 詳目顯示

研究生: 蔡欣燁
Tsai, Shin-Yeh
論文名稱: M2M網路中之資料聚合效應分析
Effect of Data Aggregation in M2M Networks
指導教授: 蘇淑茵
Sou, Sok-Ian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 44
中文關鍵詞: 資料聚合能源消耗M2M傳輸延遲
外文關鍵詞: Data Aggregation, Energy Consumption, M2M, delivery delay
相關次數: 點閱:123下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • M2M網路是新興的多對多通信技術。M2M網路中的每一個裝置節點負責去探測所在位置之資訊,並透過裝置與裝置之間的傳輸,將所得資訊傳回M2M伺服器,以利未來資料統計與整合之用。在M2M網路中,透過資料聚合技術將可有效的延長整體M2M的壽命。但是在M2M網路中,針對資料聚合的研究,大部分都僅探討聚合點的選擇以及路由演算法,在聚合終止條件上的研究較為稀少。本論文之目的是探討封包緩衝時間以及封包聚合數量所造成的影響。
    論文中提出一個分析的模組來探討資料聚合所造成的傳輸延遲以及能量號所。本論文也開發了一個模擬程式來搭配我們的數學分析模組來探討封包緩衝時間以及聚合數量所造成的影響。模擬的數據顯示封包緩衝時間的長短對能源消耗有很大的影響;更發現透過封包聚合數量能夠有效縮減傳輸延遲。本論文提供使用者在M2M網路中,設定封包緩衝時間以及聚合數量的參考,使得整體M2M網路的壽命能夠延長,並能更容易地計算出傳輸延遲以及整體網路中的能源消耗。

    Machine-to-Machine (M2M) networks are increasingly proposed for applications focused on many-to-many communication, where a sensor device is responsible for sensing data in its located area. Applying data aggregation is an efficient way to prolong the lifetime of M2M network. However, most previous M2M works only focus on routing algorithms and finding aggregation points. The objective of this thesis is to study the effects of buffering time and maximum buffered packets in data aggregation.
    We devise an analytical model to compute the delivery delay and energy efficiency in data aggregation. Then we develop an extensive simulation to accompany with analytical model to investigate the effects of buffering time and maximum buffered packets. Numerical results show that buffering time significantly affects energy consumption. Moreover, we observe that limiting maximum buffered packets in aggregation mechanism can significantly decrease delivery delay. Our study provides guidelines to set the buffering time and maximum buffered packets in data aggregation.

    Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction 1 2 Background 4 3 M2M Aggregation Mechanism 5 3.1 Time-based Aggregation Mechanism . . . . . . . . . . . . . . . . . . . 5 3.2 Adaptive Aggregation Mechanism . . . . . . . . . . . . . . . . . . . . . 7 4 Analytical Model 9 4.1 Time-based Aggregation Mechanism . . . . . . . . . . . . . . . . . . . 9 4.1.1 Delivery Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1.2 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Adaptive Aggregation Mechanism . . . . . . . . . . . . . . . . . . . . . 14 4.2.1 Delivery Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.2 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . 19 5 Numerical Examples 20 5.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 M2M Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.3 M2M Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Time-based Aggregation Mechanism . . . . . . . . . . . . . . . . . . . 26 5.2.1 Effect of Mean Buffering Time . . . . . . . . . . . . . . . . . . 26 5.2.2 Effect of Variance of Buffering Time . . . . . . . . . . . . . . . 28 5.2.3 Effects of Mean and Variance of Inter Packet Arrival Interval . 31 5.2.4 Normalization of Ratio of Inter Refresh Interval to Inter Packet Arrival Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Adaptive Aggregation Mechanism . . . . . . . . . . . . . . . . . . . . . 36 5.3.1 Effect of Maximum Buffered Packets . . . . . . . . . . . . . . . 36 5.3.2 Effects of Mean and Variance of Inter Packet Arrival Interval . 38 6 Conclusions 42 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    [1] W.-E. Chen, Y.-B. Lin, and R.-H. Liou. A weakly consistent scheme for ims presence service. IEEE Transactions on Wireless Communications, 8(7):3815 –3821, Jul. 2009.
    [2] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wireless Communications, 14(2):70 –87, Apr. 2007.
    [3] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. Building efficient wireless sensor networks with low-level naming. SIGOPS Oper. Syst. Rev., 35(5):146 –159, Oct. 2001.
    [4] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. In Proc. of the 33rd Annual Hawaii International Conference on System Sciences, Jan. 2000.
    [5] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile networking for smart dust. In Proc. of the 5th annual ACM/IEEE international conference on Mobile computing and networking, 1999.
    [6] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Maximum lifetime data gathering and aggregation in wireless sensor networks. In Proc. of the Joint International Conference on Wireless LANs and Home Networks, 2002.
    [7] F. P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, 1979.
    [8] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in wireless sensor networks. In Proc. of IEEE INFOCOM, 2002.
    [9] Y.-B. Lin. Performance modeling for mobile telephone networks. IEEE Network, 11(6):63 –68, Nov. 1997.
    [10] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks. In Proc. of IEEE INFOCOM, Apr. 2011.
    [11] L. Mottola and G.P. Picco. Muster: Adaptive energy-aware multisink routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 10(12):1694 –1709, Dec. 2011.
    [12] K. G. Ong, K. Zeng, and C.A. Grimes. A wireless, passive carbon nanotube-based gas sensor. IEEE Sensors Journal, 2(2):82 –88, Apr. 2002.
    [13] V. Pandey, A. Kaur, and N. Chand. A review on data aggregation techniques in wireless sensor network. Electronic and Electrical Engineering, 1(2):1 –8, 2010.
    [14] R. Rajagopalan and P.K. Varshney. Data-aggregation techniques in sensor networks: a survey. IEEE Communications Surveys Tutorials, 8(4):48 –63, 2006.
    [15] S.-I. Sou and C.-S. Lin. Spr proxy mechanism for 3gpp policy and charging control system. Computer Network, 55(17):3847 –3862, Dec. 2011.
    [16] M.-H. Tsai and H.-W. Dai. Bearer reservation with preemption for voice call continuity. In International Conference on Mobile Data Management: Systems, Services and Middleware, May 2009.
    [17] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin, and J. Stankovic. Alarm-net: Wireless sensor networks for assisted-living and residential monitoring. Technical report, 2006.

    下載圖示 校內:2015-08-20公開
    校外:2015-08-20公開
    QR CODE