| 研究生: |
張益三 Chang, Yi-San |
|---|---|
| 論文名稱: |
電子構裝材料等溫等壓體積收縮行為之研究 Study of Isothermal and Isobaric Volume Shrinkage for Epoxy Molding Compound |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 翹曲 、固化收縮 、壓力-體積-溫度-轉化率方程式 |
| 外文關鍵詞: | isobaric, warpage, cure shrinkage, isothermal, P-V-T-C Equation |
| 相關次數: | 點閱:108 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為求電子構裝產品之翹曲與內應力的精確預測,吾人已清楚瞭解在成型過程中,不僅是熱收縮包括固化收縮皆是影響的因素。然而,固化收縮所施與的影響並不下於熱收縮效應。
在本研究中,已發展出一種具實用性的方法論用來描述固化過程的體積收縮變化進程。而且,配合統計技巧之運用提出了一個壓力-體積-溫度-轉化率方程式(又稱P-V-T-C方程式)。這個P-V-T-C方程式相當重要,它可以用來解析在充模過程中因壓力變化所引起的收縮變量。
這個方法論共包括四個流程。首先,電子構裝材料之固化反應動力學模式與等溫轉化率數據可使用「微差掃描熱卡計」(DSC)並配合統計技巧來求得。第二,針對未固化的電子構裝材料,運用計算熱分析決定出從室溫上升至本研究所定的等溫狀況所需要的時間,這個時間值必須與膨脹計的規格相符。
第三,使用「壓力-溫度控制的膨脹計」記錄構裝材料之等壓及等溫狀態的體積變化。第四,結合體積變化與等溫轉化率的資料,提出P-V-T-C方程式,用來描述體積變化與壓力、溫度及轉化率四者間的關係。這個P-V-T-C方程式可定為 這樣的型式,經驗証發現能描述電子構裝材料於特定的等溫等壓狀態下體積收縮的歷史輪廓。
For the accurate prediction of warpage and internal stress in commercial IC packages after molding, it has been clearly understood that they are induced by not only thermal shrinkage but also cure shrinkage during the auto mold process. Cure-induced shrinkage exerts no less influence on warpage than thermal-induced shrinkage. In this thesis, a practical methodology is developed to describe the behavior evolution of volume shrinkage during the curing process and formulate a pressure-volume-temperature-cure (P-V-T-C) equation by employing statistical technique. It is valuable for this P-V-T-C Equation to be able to distinguish pressure variation induced shrinkage variation during the molding process. Four successive procedures were conducted. First, the reaction kinetics and isothermal conversion of encapsulants is determined by employing DSC and a statistical technique. Second, computational thermal analysis is involved to determine the time required for the uncured EMC samples to rise from room temperature to the isothermal states used in this study to match the capability of the dilatometer instrument. Third, isobaric and isothermal volume change of EMC during molding is monitored with a pressure-temperature-controlled dilatometer. Fourth, combining volume change and conversion, a mathematic P-V-T-C model is established to describe the relationship between volume variation (volume shrinkage), pressure, temperature and conversion. The P-V-T-C Equation can be expressed as and well describe historical profiles of volume shrinkage of EMC in specified isothermal and isobaric states.
[1] Spencer Chew, 1996, “Thermal And Viscoelastic Cheracterization Of Transfer-Molded Epoxy Encapsulant During Simulated Post-Mold Cure,” IEEE Electronic Components and Technology Conference, pp. 1032-1038.
[2] Su, F., Hwang, S.-J., Lee, H. H. and Huang, D. Y., 2000, “Prediction of Paddle Shift via 3D TSOP Modeling,” IEEE Transaction on Components and Packaging Technologies, Vol. 23, pp. 684-692.
[3] Su, J., Hwang, S.-J., Su, F., and Chen, S. K., 2003, “An Efficient Solution for Wire Sweep Analysis in IC Packaging,” Transaction of ASME, Journal of Electronic Packaging, Vol. 125, pp. 139-143.
[4] Lee, H. L., Chang, S.-J., Hwang, S.-J., Su, F., and Chen, S. K., 2003, “Computer-Aided Design of a TSOP II LOC Package Using Taguchi’s Parameter Design Method to Optimize Mold-Flow Balance,” Transaction of ASME, Journal of Electronic Packaging, Vol. 125, pp. 268-275.
[5] Pei, C. C., and Hwang, S.-J., “Three-Dimensional Paddle Shift Modeling for IC Packaging,” Transaction of ASME, Journal of Electronic Packaging (Accepted for Publication, 2004).
[6] Pei, C. C., and Hwang, S.-J., “Prediction of Wire Sweep During the Encapsulation of IC Packaging with Wire Density Effect” Transaction of ASME, Journal of Electronic Packaging (Accepted for Publication, 2004).
[7] Kuwata, K., Iko, K., and Tabata, H., 1985, “Low-Stress Resin Encapsulants for Semiconductor Devices,” IEEE Transaction on Components, Hybrids and Manufacturing Technology, Vol. 8, No. 4, pp. 486-489.
[8] Hong, L. C., and Hwang, S.-J., 2004, “Study of Warpage Due to P-V-T-C Relation of EMC in IC Packaging,” IEEE Transaction on Components and Packaging Technologies, Vol. 27, No. 2, pp. 291-295.
[9] Bair, H. E., Ryan, D. J., Taylor, C. R., Tighe, S. C., and Crouthamel, D. L., 1990, “Thermomechanical properties of IC molding compounds,” Polym. Eng. Sci., Vol. 30, No. 10, pp. 609-617.
[10] Miyano, Y., Shimbo, M., and Kunio, T., 1984, “Residual stresses and warp generated by one-side quench of an epoxy-resin beam,” Exper. Mech., Vol. 24, pp. 75-80.
[11] Isayev, A. I., and Crouthamel, D. L., 1984, “Residual stresses development in the injection molding of polymers,” Polym. Plast. Technol. Eng., Vol. 22, pp. 177-232.
[12] Kelly, G., Lyden, C., Lawton, W., and Barrett, J., 1994, “Accurate prediction of PQFP warpage,” Electronic Components and Technology Conference, pp. 102-106.
[13] Kelly, G., Lyden, C., Lawton, W., Barrett, J., Saboui, A., Pape, H., and Peters, H. J. B., 1996, “Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFP’s,” IEEE Transaction on Components, Packaging and Manufacturing Technology – Part B, Vol. 19, pp. 296-300.
[14] Ken, O., and Masumi, S., 2001, “Cure shrinkage Analysis of Epoxy Molding Compound,” Polym. Eng. Sci., Vol. 41, N0. 8, pp. 1373-1379.
[15] Yang, D. G., Jansen, K. M. B., Ernst, L. J., Zhang, G. Q., van Driel, W. D., Bressers, H. J. L., and Fan, X. J., 2004, “Prediction of Process-Induced Warpage of IC Packagings Encapsulated with Thermosetting Polymers,” Electronic Components and Technology Conference, pp. 98-105.
[16] Yang, D. G., Jansen, K. M. B., Wang, L. G., Ernst, L. J., Zhang, G. Q., Bressers, H. J. L., and Fan, X. J., 2004, “Micromechanical Modeling of Stress Evolution Induced During Cure in a Particle-Filled Electronic Packaging Polymer,” IEEE Transaction on Components and Packaging Technologies, Vol. 27, No. 4, pp. 676-683.
[17] Yang, D. G., Jansen, K. M. B., Ernst, L. J., Zhang, G. Q., van Driel, W. D., and Bressers, H. J. L., 2004, “Modeling of Cure-Induced Warpage of Plastic IC Packagings,” 5th. Int. Conf. On Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, EuroSimE, pp.33-40.
[18] Miyake, K., Yoshida, T., Baik, H. G., and Park, S. W., 2001, “Viscoelastic Warpage Analysis of Surface Mount Package,” Transaction of ASME, Journal of Electronic Packaging, Vol. 123, No. 2, pp. 101-104.
[19] Quach, A. and R. Simha, 1992, “Pressure-Volume-Temperature Properties and Transition of Amorphous Polymers ; Polystyrene and Poly (orthomethylstyrene),” J. Appl. Polym. Sci., Vol. 45, pp. 37-50.
[20] Zoller P., Bolli P. Pahud V., and Ackermann. H., 1976, “Apparatus for measuring pressure-volume-temperature relationships of polymers to 350°C and 2200 kg/cm2,” Rev. Sci. Instrum., Vol. 45, No. 8, pp. 948-952.
[21] Chang, Y. S., Hwang, S.-J., Lee, H. H., and Huang, D. Y., 2002, “Study of P-V-T-C Relation of EMC,” Transaction of ASME, Journal of Electronic Packaging, Vol. 124, No. 4, pp. 371-373.
[22] Nishimura, T. and Nakagawa, Y., 2002, “Analysis of Stress Due to Shrinkage in a Hardening Process of Liquid Epoxy Resin,” Heat Transfer-Asian Research, Vol. 31, No. 3, pp. 194-211.
[23] Chang, R. Y., Yang, W. H., Hwang, S.-J., and Su, F., 2004, “Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process,” IEEE Transaction on Components and Packaging Technologies, Vol. 27, No. 1, pp. 200-209.
[24] Kamal, M. R. and Ryan, M. E., 1973, “Injection and Compression Molding Fundamentals,” A. I. Isayev, ed., Chap. 4, Marcel Dekker, New York.
[25] Kamal, M. R., 1973, “Kinetics and Thermal Characterization of Thermoset Cure,” Polym. Eng. Sci., Vol. 13, p 59.
[26] Sourour, S. S. and Kamal, M. R., 1976, “Differential scanning calorimetry of epoxy cure-isothermal cure kinetics,” Thermochimica Acta, Vol. 14, no. 1-2, pp. 41-59.
[27] Incropera, F. P., and Dewitt, D. P., 1990, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2nd ed., pp. 226-270.