簡易檢索 / 詳目顯示

研究生: 朱宇軒
Zhu, Yu-Xuan
論文名稱: 以合作賽局為基礎達成合理收益分配之多廠熱交換器網路翻修方法
A Cooperative-Game Based Multi-Plant HEN Revamp Method for Reasonable Benefit Allocation
指導教授: 張玨庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 149
中文關鍵詞: 同步熱整合夏普利值熱交換網路翻修
外文關鍵詞: Simultaneous optimization, Interplant heat integration, Revamp design, Cooperative game
相關次數: 點閱:137下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,多廠熱交換網路設計研究一直是熱門研究議題之一,不只可使整體能源最小化,也可讓共建合作成本有效的降低,接著,由於各廠獲利可能不平均,因此就發展出利用合作賽局去合理的收益分配。但在多廠熱交換網路設計都是以新建為前提,並不符合實際情況,因此本研究發展出熱交換網路設計翻修,在藉由合作賽局去做合理的分配收益,使得廠際熱整合計畫可行率達到最高。
    在本研究中,單廠同步HEN之超結構修改成多廠HEN之設計,並發展出三種翻修情況: (1)單廠HEN中的已存在熱交換器在多廠HEN共建合作時,其可加大熱傳面積已增加其熱傳量; (2)已存在熱交換器除了可加大熱傳面積,也可在廠內移動到其他原始配對上; (3)已存在熱交換器只限用於原廠內,但新購買的熱交換器也可放置在廠內配對上。從上述三種情況可個別求出其最大節省成本費用,接著,在利用其夏普利值與風險夏普利值去合理分配收益。

    The heat exchanger network (HEN) is traditionally used for maximum heat recovery in a single chemical plant, while the multi-plant counterparts have been studied in recent years primarily for the purpose of reaping additional energy savings, e.g., see Bagajewicz and Rodera (2002). Since these works focused upon minimization of the total energy cost of the entire site, the resulting arrangements were often infeasible due to the fact that the individual savings were not fairly allocated and therefore not always acceptable to all participating parties.
    Jin et al. (2018) developed a rigorous model-based procedure to handle the above benefit allocation problem in the spirit of a cooperative game. The minimum total annual cost (TAC) of every potential coalition was first determined with a conventional MINLP model, while the core and the risk-based Shapley values of all players were then computed to resolve the distribution issues. Although satisfactory results in simple examples were reported, their approach was developed for the grass-root designs only. However, in most cases, the process plants on an industrial park were built to satisfy different market demands arose at various instances and each must have already been equipped with a HEN by the time of its completion. Therefore, the above benefit allocation problem should take shape mainly when a HEN revamp project is called for to facilitate interplant heat integration.
    The solution technique taken in the present study is basically the same as that adopted in Jin et al. (2018). Since an existing HEN is present in each plant, a modified objective function, i.e., the extra TAC saving, is utilized in the proposed model formulation. Three HEN revamp strategies are adopted in this work and their configuration rules are summarized below.
    Strategy 1: Only the interplant matches are new in the revamp design, while the original matches of each plant are kept unchanged. New heat exchangers can be purchased solely for new matches. Every in-plant match in the revamp design should be housed in an existing heat exchanger for the same match in the original design. If a larger heat-transfer area is called for in the revamp design, then the existing unit can be augmented with a new one in series to fulfil the required heat duty.
    Strategy 2: All configuration rules are the same as those in Strategy 1 except that the existing heat exchangers are allowed to be used for other original matches in the same plant.
    Strategy 3: All aforementioned restrictions are relaxed.

    Furthermore, the HEN configurations have also been analyzed to reduce the risk of plant shutdowns in a coalition. A simple example is provided to demonstrate the feasibility of the proposed allocation and revamp methods.

    摘要 II EXTEND ABSTRACT III 誌謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XIX 符號表 XXV 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3研究目的 3 1.4組織章節 3 第二章 合作賽局理論在新建多廠熱交換網路設計上的應用 4 2.1前言 4 2.2核 4 2.3夏普利值(SHAPLEY VALUE) 6 2.4多廠共同新建熱交換網路的成本分攤 8 2.5多廠共建熱交換網路的風險來源 17 2.6殘缺子聯盟 18 2.7殘缺子聯盟中參與者的收益(成本) 18 2.8風險收益(成本) 21 2.9風險夏普利值的計算 23 2.10多廠共同新建熱交換網路的風險成本分攤 26 2.11新建多廠熱交換網路設計的實用性 35 第三章 不考慮合作賽局之多廠熱交換器網路翻修策略 36 3.1多廠熱交換網路MINLP模型的限制式 36 3.2多廠熱交換網路翻修的設計策略 46 3.3廠際熱整合的最大成本節省量 46 3.3.1策略一 46 3.3.2簡例-策略一 54 3.3.2.1 P1和P2共建 55 3.3.2.2 P1和P3共建 56 3.3.2.3 P2和P3共建 56 3.3.2.4 P1、P2和P3共建 56 3.3.2.5 最低成本解 57 3.3.3策略二 64 3.3.4簡例-策略二 68 3.3.4.1 最低成本解 69 3.3.5策略三 80 3.3.6簡例 84 3.3.6.1 最低成本解 85 第四章 合作賽局理論在翻修多廠熱交換網路設計上的應用 96 4.1策略一 96 4.1.1狀況一 98 4.1.2狀況二 106 4.2策略二 109 4.2.1狀況一 111 4.2.2狀況二 119 4.3策略三 123 4.3.1狀況一 125 4.3.2狀況二 133 第五章 結果與展望 138 5.1結論 138 5.2展望 138 參考文獻 139 附錄A 熱交換器網路最佳設計的數學規劃模式 142 A.1傳統單廠熱交換網路最佳設計的數學規劃模式 142 A.2多廠新建熱交換網路的數學規劃模式 148

    Anita, K. K. Heat Integration between Two Biodiesel Processes Using a Simple Method. Energy & Fuels, 22, 1972-1979, 2008.
    Briones, V. & Kokossis, A. A new approach for the optimal retrofit of heat exchanger networks. Comput. Chem. Eng., 20, S43-S48, 1996.
    Branzei, R., Dimitrov, D. & Tijs, S. Models in Cooperative Game Theory (second edition). Heidelberg, Berlin: Springer; 2008.
    Bagajewicz, M. J. & Rodera, H. Multiple Plant Heat Integration in a Total Site. AIChE Journal, 48, 2255-2270, 2002.
    Bagajewicz, M. J. On the use of heat pimps in total site heat integration. Computers and Chemical Engineering, 27, 1707-1719, 2003.
    Chang, C. T. & Sadeli, E. Heuristic Approach to Incorporate Timesharing Schemes in Multiperiod Heat Exchanger Network Designs. Ind. Eng. Chem. Res., 51(23), 7967-7987, 2012.
    Cheng, S. L., Chang, C. T. & Jiang, D. A game-theory based optimization strategy to configure inter-plant heat integration schemes. Chemical Engineering Science, 118, 60-73, 2014.
    Chang, H. H., Chang, C. T. & Li, B. H. Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans. Energy, 148, 90-111, 2018.
    Floudas, C. A., Ciric, A. R. & Grossmann, I. E. Automatic synthesis of optimum heat exchanger network configurations. American Institute of Chemical Engineers Journal, 32, 276-290, 1986.
    Fernandez, F. R., Hinojosa, M. A. & Puerto, J. Core Solutions in Vector-Valued Games. J. Optim. Theory Appl., 112(2), 331-360, 2002.
    Frisk, M., Gothe-Lundgren, M., Jornsten, K. & Ronnqvist, M. Cost allocation in collaborative forest transportation. Eur. J. Oper. Res., 205(2), 448-458, 2010.
    Floudas, C. A., Ciric, A. R. A retrofit approach for heat exchanger networks. Comput. Chem. Eng., 13(6), 703-715, 1989.
    Floudas, C. A., Ciric, A. R. A mixed integer nonlinear programming model for retrofitting heat-exchanger networks. Comput. Chem. Eng., 29, 239-251, 1990.
    Goršek, A., Glavič, P. & Bogataj, M. Design of the optimal total site heat recovery system using SSSP approach. Chemical Engineering and Processing, 45, 372-382, 2006.
    Grabisch M, Xie LJ. A new approach to the core and Weber set of multichoice games. Math. Method Oper. Res., 66(3), 491-512, 2007.
    Jin, Y., Chang, C. T., Li, S., Jiang, D. On the use of risk-based Shapley values for cost sharing in interplant heat integration programs. Applied Energy, 211, 904−920, 2018.
    Laukkanen, T. & Seppälä, A. Interplant heat exchanger network synthesis using nanofluids for interplant heat exchange. Applied Thermal Engineering, 135, 133-144, 2018.
    Liu, L. L., Haodong S, H. D., Z, L. & Du, J. Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design. Computers and Chemical Engineering, 108, 408-424, 2018.
    Papoulias, S. A. & Grossmann, I. E. A structural optimization approach in process synthesis – II. Heat recovery networks. Computers and Chemical Engineering, 7, 707-721, 1983.
    Sorin, M. & Hammache, A. A new thermodynamic model for shaftwork targeting on total site. Applied Thermal Engineering, 25, 961-972, 2005.
    Yee, T. F. & Grossmann, I. E. Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Comput Chem Eng. 14(10), 1165-1184, 1990.
    Yee, T. F. & Grossmann, I. E. A screening and optimization approach for the retrofit of heat-exchanger networks. Ind. Eng. Chem. Res., 30, 146-162, 1991.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE