| 研究生: |
王友成 Wang, You-Cheng |
|---|---|
| 論文名稱: |
共平面式電濕潤梯度電極應用於斜面上液滴動態行為之探討 Studies of Droplet Dynamic Behaviors on an Inclined Plane by using Coplanar Gradient EWOD Electrodes |
| 指導教授: |
呂宗行
Leu, Tzong-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 電濕潤 、不對稱共平面式電極 、微機電製程 、共振頻率 |
| 外文關鍵詞: | EWOD, MEMS, Droplet Resonant Frequency, Stick-Slip Motion |
| 相關次數: | 點閱:114 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為應用電濕潤(electro-wetting on dielectrics, EWOD)原理驅動斜面上之微液滴,並透過改變電濕潤的驅動頻率,研究不同的驅動頻率對液滴於斜面上的動態行為所造成的影響。主要實驗設計為利用共平面式(coplanar)不對稱(asymmetric)之電極設計理論以及微機電製程加工技術來驅動微液滴於電極表面上做特定方向的驅動。
液滴於斜面運動的影響因素之一為振動效應,本研究透過對球缺液滴進行共振頻率(Resonant Frequency)及共振模態對液滴動態行為的探討,經本研究的分析後發現液滴在共振模態時會以Stick-Slip的行為在運動。
而Stick-Slip的動態行為會與一般的電濕潤驅動不完全相同,造成此種運動狀態的原因是電濕潤效應的反應時間與共振模態所致。經由分析n=2之共振模態液滴於斜面上的運動狀態後,除了證明振動對液滴的移動速度具有影響力外,液滴的共振模態與其內流場也會影響液滴的運動行為,使液滴產生Stick-Slip的動態行為及具有較大的移動速度。
In this study, the dynamic behaviors of a droplet driven by EWOD (electro-wetting on a dielectrics) device with varying input frequencies on an inclined plane are investigated. New triangular coplanar EWOD electrodes fabricated by using MEMS technology are designed to generate driving force on a droplet. When a square wave signal is applied, the EWOD device generates asymmetric electro-wetting force that can drive a droplet to move in a specific direction.
One of the main factors that affects droplet dynamic motion is the droplet oscillation behaviors. In this study, different resonant mode frequencies of a sessile droplet are first analyzed. It is found that the resonant modes that can happen on horizontal or inclined planes are the even number modes only for EWOD actuation. Odd number modes cannot exist. The droplet moving speed on an inclined plane has been also studied. The droplet moving speeds at resonant modes are higher than those not at resonant modes. In addition, the highest sliding velocity and the droplet dynamic “Stick-Slip” motion are found at the resonant mode n=2. By analyzing the droplet motion on a plane with inclined angle of 25°. This study proves that resonant dynamics of a droplet significantly affects behaviors of the droplet movement, as well as its sliding velocity.
【1】C.H. Yung, “Experimental Study of Condensation Heat Transfer by Using Electrowetting Techniques”, National Cheng Kung University, Taiwan, pp.1-90, 2012
【2】X.W. Chen, “Enhancement of Condensation Heat Transfer by using Optimized Asymmetric Coplanar EWOD Electrode Design”, National Cheng Kung University, Taiwan, 2014
【3】M. Washizu, “Electrostatic Actuation of Liquid Droplets for Microreactor Applications”, Journal of IEEE Transactions on Industry Applications, Vol.34, pp. 732-737, 1998
【4】S. K. Cho, H. Moon, C. J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits”, Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80, 2003.
【5】U. C. Yi, C. J. Kim, “Characterization of electrowetting actuation on addressable single-side coplanar electrodes”, Journal of Micromechanics and Microengineering”, Vol.16, pp. 2053-2059,2006
【6】U. C. Yi, C. J. Kim, “EWOD Actuation with Electrode-free Cover Plate”, The 13th International Conference on Soild-State Sensors, Vol.1, pp. 89-92, 2005.
【7】M. G. Pollack, A. D. Shenderov, R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics”, Lab Chip, Vol.2, pp. 96-101, 2002.
【8】T. T. Wang, P. W. Huang, S. K. Fan, “Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting”, The 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 174-177, 2006.
【9】T. Yasuda , K. Imamura, “Bidirectional Droplet Transportation Using EWOD-Induced Wettability Gradient”, The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 393-395, 2010
【10】S. Daniel, M. K. Chaudhury, “Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration”, Langmuir, Vol.18, pp. 3404-3407, 2002.
【11】H. B. Eral, D. J. C. M. ’t Mannetje, J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications”, Colloid and polymer science, Vol.291, pp. 247-260, 2012.
【12】W. C. Nelson, P. Sen, C. J. Kim, “Dynamic Contact Angles and Hysteresis under Electrowetting on Dielectric”, Langmuir., Vol.27, pp. 10319-10326, 2012
【13】Y. Xiu, L. Zhu, D. W. Hess, C. P. Wong, “Relationship between Work of Adhesion and Contact Angle Hysteresis on Superhydrophobic Surfaces”, The Journal of Physical Chemistry C, Vol.112, pp. 11403-11407, 2008
【14】R. Malka, Y. Fouillet, L. Davoustb, “Rotating flow within a droplet actuated with AC EWOD”, Sensors and Actuators B, Vol.154, pp. 191-198, 2011
【15】D. J. C. M. ‘t Mannetje, C. U. Murade, D. van den Ende, F. Mugele, “Electrically assisted drop sliding on inclined planes”, Applied Physics Letters, Vol.98, pp. 014102-1, 2011.
【16】P. Brunet, J. Eggers, R.D. Deegan, “Motion of a drop driven by substrate vibrations”, The European Physical Journal Special Topics, Vol.166, pp. 11-14, 2009
【17】S. Daniel, M. K. Chaudhury, P.G. de Gennes, “Vibration Actuated Drop Motion on Surfaces for Batch Microfluidic Processes”, Langmuir,Vol.21, pp. 4240-4248, 2005
【18】J. Hong, S. J. Lee, B. C. Koo, Y. K. Suh, K. H. Kang, “Size Selective Sliding of Sessile Drops on a Slightly Inclined Plane Using Low-Frequency AC Electrowetting”, Langmuir, Vol.28, pp. 6307-6312, 2012
【19】X. Noblin, A. Buguin, F. B. Wyart, “Vibrated sessile drops: Transition between pinned and mobile contact line oscillations”, The European Physical Journal E, Vol.14, pp. 395-404 ,2004
【20】J. S. Sharp, D. J. Farmer, J. Kelly, “Contact Angle Dependence of the Resonant Frequency of Sessile Water Droplets”, Langmuir, Vol.27, pp. 9367-9371,2011
【21】A. Torkkeli, “Droplet microfluidics on a planar surface”, Technical Research Centre of Finland, Finland, pp.1-194, Espoo, 2003.
【22】J. M. Oh, S. H. Ko, K. H. Kang, “Analysis of electrowetting -driven spreading of a drop in air”, Physics of Fluids, Vol 22, pp. 032002-1, 2010
【23】G. Lippmann, “Relation between electrical phenomena and capillaries”, Annales de Chimie et de Physique, Vol.5, pp. 494-549,1875