簡易檢索 / 詳目顯示

研究生: 洪德才
Hung, De-Tsai
論文名稱: 介孔釔安定氧化鋯之合成及其特性
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 78
中文關鍵詞: 釔安定氧化鋯介孔材料
外文關鍵詞: mesoporous material, zirconium, yttrium
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從Mobil公司在1992發表MCM-41開始,介孔材料所具有的高比表面積、孔洞大小均ㄧ以及可控制孔洞大小等特性,且介孔材料的應用廣泛,是近年來相當引人注目的研究領域之ㄧ。
    本研究嘗試以溶膠-凝膠製程結合高分子液晶模板機制來合成具有介孔結構之釔安定氧化鋯。選擇非離子型界面活性劑F127作為高分子模板並以ZrCl4、YCl3做無機先驅物,利用氣相蒸發誘導自組裝的方式製備介孔釔安定氧化鋯並探討改變界面活性劑濃度、前驅物中添加水量及釔含量對合成介孔釔安定氧化鋯之影響。
    結果顯示已可以合成具奈米級規則孔洞之釔安定氧化鋯粉末,經由BET分析得知介孔釔安定氧化鋯粉末之比表面積約為134 m2/g、孔洞直徑約為5 nm。結果可歸納三點結論:1、作為模版之有機高分子與形成孔壁無機前驅物須具有適當之混合比才會形成規則排列之介孔結構。2、水解和縮合反應的控制是合成介孔材料的重要影響因素;尤其是縮合反應,控制縮合反應速率有助於增加金屬離子與界面活性劑鍵結,更易形成介孔結構。3、釔的添加會抑制ZrO2的縮合反應速率,釔含量增加易合成規則排列之孔洞結構。
    此外,本研究將所合成出的介孔釔安定氧化鋯粉末與陰極材料La0.7Sr0.3CoO3組成複合電極,並藉由交流阻抗分析及陰極過電壓量測對此複合電極構成的半電池進行分析。實驗結果顯示,以介孔釔安定氧化鋯粉末製成之複合電極可降低電極與電解質間之界面阻抗及電極之極化現象。

    Since the mesoporous silica material,MCM-41,has been presented by Mobil company in 1922﹐there has been much interest in expanding the compositions of mesoporous inorganic materials﹒ The mesoporous materials exhibit many applications due to the high specific surface area,uniform pore size and the adjustment of pore size﹒
    In this thesis﹐the mesoporous Yttria Stabilized Zirconia(YSZ) has been synthesized by integrating inorganic chemistry and liquid-crystal template mechanism﹒The F127﹐structure-directed agent , ZrCl4 and YCl3 were used to synthesize the mesoporous YSZ by the evaporation-induced self- assembly(EISA) derived method﹒The effect of experimental parameters﹐such as surfactant concentration、water contents﹐and molar ratio of Y2O3﹐on pore morphology and specific surface area are discussed in this study﹒
    The mesoporous YSZ has been synthesized successfully and exhibits a high surface area﹐about 134 m2/g﹐and uniform pore size﹐about 5 nm by BET analysis﹒There are three important results obtained in this study﹒First﹐the highly ordered mesostructure can be obtained by mixing proper ratio of surfactant and inorganic precursor﹒Second﹐the most important factor of synthesized mesoporous YSZ is to control the rate of hydrolysis and condensation﹒Especially for condensation reaction﹐the slow rate can promote the metal species and hydrophilic part to form crown-ether-type complexes through weak coordination bonds﹒Thirdly﹐the addition of Y2O3 can inhibit reaction rate of condensation﹒ Therefore﹐it is helpful to form the organic- inorganic complexes with increasing of the amount of Y2O3 added﹒

    總目錄 中文摘要 I 英文摘要 II 總目錄 III 圖目錄 VI 表目錄 IX 第一章 序論 1 1-1 前言 1 1-2 研究動機及目的 1 第二章 理論基礎與文獻回顧 4 2-1 孔洞材料 4 2-2 界面活性劑與微胞的形成 7 2-3 三區塊共聚物 9 2-4 介孔材料之合成及分析 13 2-4-1 介孔材料之合成 13 2-4-2 介孔材料之孔洞及比表面積分析 16 2-5 固態氧化物燃料電池 20 2-6 介孔材料應用於SOFC 26 第三章 實驗方法與步驟 28 3-1 實驗藥品 28 3-2 合成步驟 28 3-3 製程參數 30 3-3-1 界面活性劑濃度之影響 30 3-3-2 前驅物溶液中含水量之影響 30 3-3-3 釔添加量之影響 30 3-4 反應生成物特性分析 30 3-4-1 熱重量分析 30 3-4-2 X射線粉末繞射分析 30 3-4-3 富立葉轉換紅外線光譜 31 3-4-4 穿透式電子顯微鏡分析 31 3-4-5 氮氣等溫吸附/脫附測量 31 3-5 電化學分析 32 3-5-1 交流阻抗分析 34 3-5-2 陰極過電壓量測 34 第四章 結果與討論 36 4-1 介孔釔安定氧化鋯的合成與鑑定 36 4-1-1 XRD分析 36 4-1-2 熱重量(TG)及FTIR分析 36 4-1-3 氮氣等溫吸附/脫附分析 40 4-1-4 TEM表面型態觀察 40 4-1-5 小角度X-ray散射分析 40 4-2 界面活性劑濃度之影響 46 4-2-1 XRD分析 46 4-2-2 氮氣等溫吸附/脫附分析 46 4-2-3 TEM表面形態觀察 48 4-3 前驅物中含水量之影響 54 4-3-1 XRD分析 54 4-3-2 氮氣等溫吸附/脫附分析 54 4-3-3 TEM表面型態觀察 55 4-4 釔添加量對生成物結晶相之影響 61 4-4-1 XRD分析 61 4-4-2 氮氣等溫吸附/脫附分析 64 4-4-3 TEM表面型態觀察 67 4-5 交流阻抗分析 69 4-6 陰極過電壓量測 73 第五章 結論 77 參考文獻 79 致謝 83

    1. M. Grätzel, “Ultrafast colour displays”, Nature, 409, 575(2001)
    2. H. Verweij, “Nanocrystalline and nanoporous ceramics”, Adv. Mater, 17, 1483 (1998)
    3. M. Itoh, H. Hattori and K. Tanabe, “Catalytic sites on SnO2 and TiO2-SnO2 for the isomerzation of 1-Butene”, J. Catal., 43, 192(1976)
    4. A. Camanzi and G. Sberveglierri,U.S. Patent 5,185,130(1993)
    5. S. S. Park and J. D. Mackenzie, “Thickness and microstructure effects on alcohol sensing of tin oxide thin films”, Thin Solid Films, 274, 154 (1996)
    6. K. Langer, E. Mutschler, G. Lambrecht, D. Mayer, G. Troschau, F. Stieneker and J. Kreuter, “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery part III:evaluation as drug delivery system for ophthalmic application”, Int. J. Pharmace, 158, 219(1997)
    7. L. A. Chick, L. R. Pederson and G. J. Exarhos, “Glycine-nitrate combustion synthesis of oxide ceramic powder”, Mater. Lett., 10, 6(1990)
    8. W. J. Ward, “Molecular sieve catalysts”, in applied catalysis, Academic press,New York, p.11(1984)
    9. S. Bhatia, “Zeolite catalysis principles and application”, CRC press, Florida, p.7 (1990)
    10. C. T. Kresga, M. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism ”, Nature, 359, 22(1992)
    11. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitted, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, and J. L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., 114, 10834(1992)
    12. J. Y. Ying, C. P. Mehnert and M. S. Wong, “Synthesis and applications of supramolecular-templated mesoporous materials”, Angew. Chem. Int. Ed., 38, 56(1999)
    13. C. G. Wu and T. Bein, “Conducting polyaniline filaments in a mesoporous channel host”, Science, 266, 1757(1994)
    14. C. G. Wu and T. Bein, “Polyaniline wires in oxidant-containing mesoporous channel hosts”, Chem. Mater., 6, 1109(1994)
    15. 張正明, “酸性溶液下中孔徑分子篩的反應機構之探討”,中原大學化學系碩士論文, p.1-3. (2002)
    16. B. Lindmanm and H. Wennerstrom, “Micells: Amphiphile Aggregation in Aqueous solution“, Springer-Verlag, Heidelberg, p.6. (1980)
    17. Y. C. Lin and S. H. Chen, “Ion correlations and counter-ion condensation in ionic micellar solutions”, Condens. Matter., 8, 12169(1996)
    18. 高嘉佩, “中孔洞矽氧分子篩合成條件之控制及動力學研究”, 臺灣大學化學系碩士論文,p.5. (2000)
    19.“Pluronic and Tetronic Surfactants”, Technical Brochure, BASF Corp. ,Parsippany, NJ(1989)
    20. D. Zhao, Q. Huo, J. Feng,, B. F. Chmelka and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered Hydrothermally Stable Mesoporous Silica Structures”, J. Am. Chem. Soc., 120, 6024(1998)
    21. G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, “Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures”, Chem. Rev., 102, 4093(2002)
    22. S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a theory of the van der waals adsorption of gases“, J. Am. Chem. Soc., 62, 1723(1940)
    23. G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of Heterogeneous Catalysis”, Vol. 3,VCHD-69451 Weinheim, p.1508(1997)
    24. 李泰誠, “以氧化銅做為固態氧化物燃料電池陰極材料之反應機構及性能改善之研究”, 清華大學化學工程研究所碩士論文, p.1. (1995)
    25. 張建松, ”固態氧化物燃料電池單電池結構之製作”, 清華大學材料科學工程學系碩士論文, p.7-12.(2003)
    26. 方冠榮, “奈米科技-基礎、應用與實作”, 高立圖書公司, p.269-290. (2005)
    27. N. Q. Minh, “Ceramic Fuel Cell”, J. Am. Ceram. Soc., 76, 563(1993)
    28. E. L. Crepaldi, G. J. de A. A. Soler-Illia, A. Bouchara, D. Grroso, D. Durand and C. Sanchez, “Controlled Formation of Highly Ordered Cubic and Hexagonal Mesoporous Nanocrystalline Yttria-Zirconia and Ceria-Zirconia Thin-Films Exhibiting High Temperature Stability”, Angew. Chem. Int. Ed., 42, 347(2003)
    29. B. D. Cullity, Elements of X-ray Diffraction, second ed. Addison-Wesley; California, USA, p.284(1978)
    30. S. J. Gregg and K. S. W. Sing, “Adsorption, surface area and porosity”, second ed. ,Academic press; London, U. K. , p.4.(1982)
    31. 余河潔, “以鍶掺雜銅酸鑭做為中溫固態氧化物燃料電池陰極材料之研究”, 成功大學材料科學及工程學系博士論文,p.42-46.(2005)
    32. E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso and C. Sanchez, “Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability”, New. J. Chem, 27, 9(2003)
    33. E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2”, J. Am. Chem. Soc, 125, 9770(2003)
    34. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, “Generalized syntheses of large-pore mesoporous metal oxides with semicrtstalline frameworks”, Nature, 396, 152(1998)
    35. 陳朝楠, “合成高均勻度之中孔洞氧化矽球”,成功大學化學系碩士論文,p.95.(2004)
    36. C. W. Kuo, Y. H. Lee, K. Z. Fung, and M. C. Wang, “Effect of Y2O3 addition on the phase transition and growth of YSZ nanocrystallites prepared by a sol-gel process”, J. Non-cryst. Solids, 351, 304(2005)
    37. T. Chrasha, A. H. King, and C. C. Berndt, “The effect of temperature and Yttria content on the properties of hot isostatically pressed Si3N4“, Mater. Sci. Eng. , 105-106, 169(1988)
    38. R. C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect “, J. Phys. Chem., 69, 1238(1965)
    39. E. Tani, M. Yoshimura, S. Somiya, “Formation of Ultrafine Tetragonal ZrO2 Powder under Hydrothermal Conditions“, J. Am. Ceram. Soc., 66, 11(1983)
    40. M. I. Osendi, J. S. Moya, J. Soria, “Metastability of Tetragonal Zirconia Powders “, J. Am. Ceram. Soc., 68, 135(1985)

    下載圖示 校內:2006-07-28公開
    校外:2006-07-28公開
    QR CODE