簡易檢索 / 詳目顯示

研究生: 袁士庭
Yuan, Shin-Ting
論文名稱: 水蒸氣熱氧化製備碳/氧化鎵異質界面薄膜氣體感測器之研究
A study of C/Ga2O3 heterocontact thin film gas sensor prepared by rheotaxial growth and thermal oxidation with water vapor
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 140
中文關鍵詞: 水蒸氣異質接觸薄膜氧化鎵氣體感測器
外文關鍵詞: gas sensor, gallium oxide, thin film, heterocontact, carbon, water vapor
相關次數: 點閱:124下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業的發展與民眾對於自身居住安全及環保意識抬頭,氣體感測器已經和我們的生活密不可分。氧化鎵材料在高溫下仍具有高穩定性,因此適合應用於高溫環境。
    本實驗用電漿增強化學氣相沉積法(PECVD)製備碳膜及真空蒸鍍物理氣相沉積法(PVD)與水蒸氣熱氧化法製備氧化鎵薄膜氣體感測器。本實驗分兩階段:第一階段探討水蒸氣氧氛下氧化對氧化鎵薄膜表面型態及感測性質之影響。第二階段則探討碳/氧化鎵薄膜,不同厚度碳膜對氧化鎵薄膜表面型態及感測性質之影響。
    實驗結果顯示,鎵薄膜在水蒸氣氣氛下氧化,會因不同載流氣體,而使氧化鎵薄膜表面型態有不同的表現,感測性質也會受到影響,當氧化時間增加,感測度會有下降的趨勢;碳/氧化鎵薄膜之最佳感測度甚至可高達120,與純氧化鎵薄膜之最佳感測度3.22要改善許多。

    Gas sensors are becoming more and more important because of their extensive applications in the industrial, living security, and the human’s environmental protection. Gallium oxide semiconductor is adaptable to the high temperature application because it is stable under high temperature.
    In the study, gallium oxide thin film was prepared by first depositing a carbon thin film onto a fused silica substrate by a plasma enhanced chemical vapor deposition (PECVD) , then a gallium film by rheotaxial growth, and finally thermal oxidation with water vapor. The effect of water vapor concentration during thermal oxidation process on the morphology and sensitivity of gallium oxide was examined. And then the variation of the morphology and sensitivity of C/Ga2O3 thin film with the carbon film was elucidated.
    The experimental results show that water vapor concentration used to oxidize gallium thin film has significantly affected the morphology and sensitivity of the gallium oxide, and the sensitivity decreases with increasing the oxidizing time. A much better sensitivity was obtained for C/Ga2O3 thin film (120) than pure Ga2O3 thin film (3.22)

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 圖目錄…………………………………………………………………Ⅶ 表目錄………………………………………………………………ⅩⅡ 符號說明……………………………………………………………ⅩⅢ 第一章 緒論……………………………………………………………………....1 1.1簡介……………………………………………………….…….…….1 1.2研究發展與文獻回顧…………………………………………….….5 1.3研究目標與動機……………………………………………….…...11 第二章 理論回顧及分析………………………………………………………..13 2.1 真空蒸鍍理論……………………………………………………...13 2.1.1 真空理論………………………………………………………....13 2.1.2蒸鍍理論…………………………………………………….……16 2.2薄膜成長機制與模式………..…………………………………...…20 2.2.1蒸氣原子在基板的表面行為…………..…………………………20 2.2.2薄膜沉積的因素 ……..………………………………………..…23 2.2.3薄膜的成長模式……………………..……………………………27 2.3氣體感測器的工作原理…………..…………………………...……30 2.3.1蕭特基接觸……..…………………………………………………30 2.3.2氧氣的吸附與還原性氣體的作用………..………………………35 2.4晶體中的雜質……………..………………………………………...40 2.5 Ga2O3材料及結構簡介……..………………………………………42 第三章 實驗系統及操作……………………………………………………..…44 3.1實驗流程………..…………………………………………………...47 3.2基板與材料的準備…………..……………………………...………48 3.3真空蒸鍍系統………..………………………………………...……52 3.4蒸鍍程序…………..………………………………………………...55 3.5高溫氧化程序………..………………………………………...……56 3.6結構分析………..……………………………………………...……58 3.7元素組成分析………..…………………………………..….………58 3.8電性量測及氣體偵測…………..…………………………...………58 第四章 實驗結果與討論 4.1不同氧化條件對薄膜型態的影響…..…………………….………..61 4.1.1水蒸氣氧化對薄膜型態的影響…………..……………….….…..62 4.1.1.1乾空氣夾帶水蒸氣以進行氧化對薄膜型態的影響…….....…..63 4.1.1.2氮氣夾帶水蒸氣以進行氧化對薄膜型態的影響……..…….....66 4.1.2不同氧化時間對薄膜型態的影響……..…………………………71 4.2鍍碳膜對氧化鎵薄膜型態之影響……………..………………...…74 4.2.1碳/鎵薄膜- 氧化前之薄膜型態………….………………………74 4.2.2碳/鎵薄膜- 氧化後之薄膜型態………….………………………77 4.3 XRD對氧化鎵薄膜之分析………………………………………...80 4.3.1乾空氣帶水蒸氣以進行氧化其對氧化鎵薄膜晶相之影響…..…81 4.3.2氮氣帶水蒸氣以進行氧化其對氧化鎵薄膜晶相之影響…..……83 4.4 XRD對碳/氧化鎵薄膜之分析………………………………..……86 4.5 EDS對氧化鎵薄膜之元素組成分析………………………………89 4.5.1污染之氧化鎵薄膜元素組成分析………..………………………89 4.5.2不同氧化時間對氧化鎵薄膜之元素組成影響…..………………93 4.6 EDS對碳 /氧化鎵薄膜之元素組成分析………………….………96 4.7 XPS對污染氧化鎵薄膜之表面元素組成分析…………..………..98 4.8不同氧化條件下氧化鎵薄膜之電性探討……..…………….……100 4.8.1乾空氣夾帶水蒸氣氧化對氧化鎵薄膜之電性影響……....……102 4.8.2氮氣夾帶水蒸氣氧化對氧化鎵薄膜之電性影響………....……106 4.8.3氮氣夾帶水蒸氣氧化其氧化時間對氧化鎵薄膜之電性影響…112 4.8.4汙染氧化鎵薄膜之電性量測………..………………………..…118 4.8.5鍍碳膜對氧化鎵薄膜之電性影響………..…………………..…120 4.8.5.1製備碳/鎵薄膜其厚度分別為200 Å及1 µm………..….……120 4.8.5.2製備碳/鎵薄膜其厚度分別為500 Å及1 µm………...………125 4.8.5.3不同碳膜厚度對氧化鎵薄膜之電性影響…………..…...……130 第五章 結論……………………………………………………………………133 參考文獻………………………………………………………………135 自述……………………………………………………………………140

    1. S. M. Sze, Semiconductor Sensors ( 1994)
    2. 葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷第4期,第75頁( 1999)
    3. 李俊遠,氣體感測器介紹,工業材料,第124期,第82頁( 1997)
    4. T. Takashi, Oxygen sensor, Sens. Actuators B., Vol. 14, pp.109 ( 1988)
    5. M. Munidasa, A. Mandelis and A. Katz, Purely thermal wave based non-chemical photopyroelectric gas sensor: application to hydrogen, Journal De Physique, Vol. 4, No. 7, pp. C7-515-518 ( July 1994)
    6. E. A. Symons, Catalytic gas sensors in Gas Sensors: Principles, Operation and Development, ed. G. Sberveglieri, Boston: Kluwer Academic Publishers, pp. 169 ( 1992)
    7. G. Morel, Method development and quality assurance for the analysis of hydrocarbons in environmental samples, International Journal of Environmental Analytical Chemistry, Vol. 63, No. 4, pp. 269-288 ( 1996)
    8. 張希誠,感測器的基礎與應用:工廠與機器人篇,第49-51頁( 1986)
    9. 邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知,第6卷,第6期,第67-71頁( 1985)
    10. 蔡嬪嬪,氣體感測器的新動向,工業材料,第150期,第98頁( 1999)
    11. U. R. Bernier and R. A. Yost, Vacuum operation of the flameioniza-tion detector for gas chromatography, Journal of Chromatographic Science, Vol. 31, No. 9, pp. 358-362 ( Sep. 1993)
    12. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,第120-133頁( 1993)
    13. 鄭煜騰,氣體感測器的市場分析與發展概況,科儀新知,第18卷,第5期,第76-84頁( 1995)
    14. 朱俊彥,攜帶式氣體分析儀與偵測器市場新趨勢,環保產業雙月刊,第12 期( 2002)
    15. G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Oxide Materials for Development of Integrated Gas Sensors- A Comprehensive Review, Crit. Rev. Solid State Mater. Sci., Vol. 29:3, 111 -188( 2004)
    16. 陳寶清,真空表面處理工學,表面工業雜誌,第31期( 1992)
    17. 國家科學研究院儀器科學研究中心,真空技術與應用( 2001)
    18. R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, J. Am. Ceram. Soc., Vol. 74, pp. 719-722( 1952)
    19. S. Geller, Crystal structure of β-Ga2O3, J. Chem. Phys., Vol. 33,
    pp. 676-684( 1960)
    20. Y. Wouters, A. Galerie and Jean-PierrePetit, Thermal oxidation of titanium by water vapor, Solid State Ionics, Vol. 104, pp. 89-96( 1997)
    21. Y. P. Jacob, V.A.C. Haanappel, M.F. Stroosnijder, H. Buscail, P. Fielitz and G. Borchardt, The effect of gas composition on the isothermal oxidation behavior of PM chromium, Corros. Sci., Vol. 44, pp. 2027-2039( 2002)
    22. 陳烐培,在不同氧化條件下以真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,國立成功大學碩士論文( 2005)
    23. P. B. Weise, Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis, J. Chem. Phys. , Vol. 2
    pp. 1531-1538(1953)
    24. 陳寶清,真空表面處理工學,表面工業雜誌,第31期( 1992)
    25. 賴耿陽,真空蒸鍍應用技術,復漢出版社(1991)
    26. Chin-Cheng Chen and Chiu-Chen Chen, Morphology and electrical properties of pure and Ti-doped gas-sensitive Ga2O3 film prepared by rheotaxial growth and thermal oxidation, J. Mater. Res., Vol. 19, No. 4, pp. 1105-1117( Apr 2004)
    27. J. A. Venables and G. L. Price, Nucleation of thin films in Epitaxial Growth , ed. J. W. Matthews, New York :Academic Press, pp. 381( 1975)
    28. V. E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen, I. Zeitschrift fur Kristallographie, Bd., Vol. 110, pp. 372-394( 1958)
    29. J. A. Venables, G. D. T. Spiller and M. Hanbucken ,Nucleation and growth of thin film, Reports on Progress in Physics, Vol. 47, pp.399-459( 1984)
    30. Zeleny and Z. P. Camb. Phil. Soc. , Vol. 18, pp. 71( 1915)
    31. 林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料,第157期,第163-169頁( 2000)
    32. S. R. Morrision, Chemical sensors in Semiconductor Sensors, ed. S. M. Sze, New York: John Wiley and Sons, Inc., pp. 383( 1994)
    33. P. B. Weisz, Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, The Journal of Chemical Physics, Vol. 21, No. 9, pp. 1531-1538( 1953)
    34. S. R. Morrison, The Chemical Physics of Surfaces 2nd , New York: Plenum Press, pp. 251( 1990).
    35. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators, Vol. 18, pp. 71-113 ( 1989)
    36. H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society, Vol. 126, No. 4, pp. 627-633 ( 1979)
    37. N. Yamazoe, J. Fuchigami, M. Kishikawa and T. Seiyama, Interac- tions of tin oxide surface with O2, H2O and H2, Surface Science, Vol.86, pp . 335-344( 1979)
    38. S. Geller, Crystal structure of β-Ga2O3, The Journal of Chemical Physics, Vol. 33, No. 3, pp. 676-684( 1960)
    39. R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, Journal of the American Ceramic Society, Vol. 74, pp. 719-722( 1952)
    40. M. Fleischer, W. Hanrieder and H. Meixner, Stability of semiconducting gallium oxide thin films, Thin Solid Film, Vol. 190,
    pp. 93-102( 1990)
    41. 陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,國立成功大學碩士論文( 2004)
    42. 薛永浚,不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究,國立成功大學碩士論文( 2006)
    43. T. Harwig, G. J. Wubs and G. J. Dirksen, Electrical properties of
    β-Ga2O3 single Crystals, Solid State Commun., Vol. 18, pp.1223-1225( 1976)
    44. R. Brown, Thin film substrates in Handbook of Thin Film Technology, ed. L. I. Maissel and R. Glang, New York: McGraw-Hill, pp. 6-37( 1970)
    45. C. J. Smithells, Vapour pressures in Metals Reference Book, London & Boston: Butterworths, pp. 231( 1976)
    46. Schaffer, Saxena, Antolovich, Sanders and Warner, 材料科學導論,第4節( 1995)
    47. A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, Applied Physics, Vol. 95, p6374-6380( 2004)
    48. H. Jr. Baumann ,Trans., Electrochem. Soc., 80,95( 1941)

    下載圖示 校內:2009-08-11公開
    校外:2009-08-11公開
    QR CODE